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The particle and charge correlations of the two-dimensional Coulomb gas are 
studied in the dielectric phase. A term-by-term analysis of the low-fugacity 
expansions suggests that the large-distance behaviors of the particle correlations 
are governed by multipolar interactions, similar to what happens in a system of 
permanent dipoles. These behaviors are compatible with the asymptotic struc- 
ture of the BGY hierarchy equations; on the other hand, a new identity for the 
dielectric constant g is used to show that the four-particle correlations decay as 
the dipole~:lipole potential 1/r 2 when two neutral pairs are separated by a 
large distance r. Near the zero-density critical point of the Kosterlitz-Thouless 
transition, we resum the low-fugacity expansions of both l/e, and the charge 
correlation C(r). We thus retrieve the coupling constant flow equations of the 
renormalization group as well as the effective interaction energy of the iterated 
mean-field theory by Kosterlitz and Thouless. The coupling constant at the RG 
fixed point is then identified with 1/e. The nonanatyticity of 1/e at the transition 
turns out to coincide with the divergence of the low-fugacity series for this 
quantity. The leading term in the large-distance behavior of C(r) is found to be 
the same as for external charges. Moreover, we exhibit the subleading terms 
which also contribute to 1/e. 

KEY WORDS:  Kosterlitz-Thouless transition; Coulomb gas; dielectric 
phase; correlations; fugacity expansions; BGY hierarchy. 

1. I N T R O D U C T I O N  

The two-dimensional Coulomb gas (CG) is a neutral system made up of 
two species of charges interacting via a logarithmic potential. In this model 
(Section 2), the attraction between oppositely charged particles competes 
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with the thermal motion. If the particles are point charges (1) (_+e), the 
attraction at short distances makes the system collapse for coupling con- 
stants F~>2 ( / '=f ie  2 and/~ is the inverse temperature). On the contrary, 
if the collapse is avoided by some short-range repulsion, the model remains 
well-behaved for any temperature. At high temperatures, the system is in a 
conductive phase: the correlations decay exponentially at large distance. 3 
At low temperatures, F~> 4, the system undergoes the so-called Kosterlitz- 
Thouless (KT) transition (v) to a dielectric phase, where the long-range 
logarithmic potential binds opposite charges in pairs (in this phase, the free 
energy variation associated with the creation of a macroscopic pair is 
positive). In the conductive phase the external charges are perfectly 
screened and the dielectric constant e is infinite, whereas in the dielectric 
phase the screening is only partial 4 and ~ is finite. 

The above binding mechanism was devised by Kosterlitz and Thouless 
in order to explain a special class of two-dimensional transitions. Indeed, 
in two-dimensional systems with local interactions and continuous sym- 
metry, there is no spontaneous symmetry breaking. ~ However, high- and 
low-temperature expansions show that in some systems (XY model, defects 
in pseudosolids, superfluid helium films,...), the correlations change from an 
exponential decay to an algebraic behavior at large distances. This tran- 
sition from a disordered phase to a quasi-ordered phase is due to the con- 
densation of topological excitations interacting via a logarithmic potential. 
The corresponding universality class is characterized by exponents which 
continuously vary with some microscopic parameters. More recently, 
generalized Coulomb gases made up of both electrical and magnetic 
charges have been introduced(t~ for such systems, the critical exponents 
on the transition line can be exactly calculated through the renormalization 
group (RG) methods. This approach is complementary to the results of the 
conformally invariant theory. (11~ In this paper, we are interested in the 
particle and charge correlations of the CG in the dielectric phase, which 
are not studied in the previous methods, nor in the field-theory methods 
applied to the sine-Gordon representation of the CG. ('2~ 

In the literature, the intrinsic correlations of the CG are dealt with 
only in the iterated mean-field theory, introduced by Kosterlitz and 

3 For a rigorous proof at sufficiently high temperatures, see Yang(2); this work extends the 
analysis of Brydges and Federbusb (3) and Imbrie (4) to two-dimensional Coulomb systems. 
A lattice version of the CG has been exactly solved at F =  2 by Gaudin~51; the corresponding 
correlations decay exponentially and this system is indeed in a conductive phase, as shown 
by Cornu and Jancovici. (6) 

4 In refs. 8 it is rigorously shown that, at sufficiently low temperatures and small activities, the 
correlations between external noninteger charges are bounded by an inverse power law and 
go to zero at large distances. 
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Thouless (7) in order to describe the transition at finite density. In this 
theory, the two charges of a given neutral pair polarize the smaller pairs 
which are located between them. Then the effective energy of the pair is 
equal to the interaction potential in the vacuum renormalized by an effec- 
tive dielectric constant e(r) which depends on the size r of the pair. The 
intrinsic charge correlation C(r) is identified with an effective pair correla- 
tion proportional to the Boltzmann factor associated with the above effec- 
tive energy. Thus, in the framework of this heuristic approach, this charge 
correlation in the dielectric phase would decay as 1/r r/~, where e is the 
macroscopic dielectric constant of the medium [e appears as the limit of 
e(r) when r ~ Go ]. This result is not a priori obvious at all. First, C(r) is 
the difference between the particle correlations pr++(r) and p r_ ( r ) ;  
pr+ +(r) [pr+_(r)] denotes the correlation between charges with the same 
(opposite) sign. The point is that these particle correlations are expected to 
decay as 1/r 4, similar to what happens in a system of permanent dipoles. (~3) 
Second, even if compensations of the 1/r 4 terms occur, the intrinsic charge 
correlation does not usually behave as the correlation between infinitesimal 
external charges q~ and q~ which, by definition of e, decays as 
exp[ - fl(q~q~/e) In r] = 1/r (~q~qr/~). 

In this paper, we study the large-distance behaviors of the particle 
correlations in the dielectric phase by both an analysis of the low-fugacity 
expansions (Section 3) and a survey of the BGY hierarchy equations at 
finite densities (Section 5). The term-by-term analysis indicates that these 
behaviors are governed by multipolar interactions. In particular, v p++(r) 
and p+_(r) indeed decay as 1/r 4, i.e., as the square of the dipole-dipole 
potential. These perturbative results are shown to be compatible with the 
asymptotic structure of the BGY equations. More precisely, we first derive 
a new exact expression of 1/e in terms of the dipole associated with the 
cloud surrounding two opposite charges of the medium. Then, this identity 
is used to show that the four-particle correlation p r + _ +  decays as 1/r 2 
when two neutral pairs are separated by a large distance r. 

Another part of this paper (Section 4) is devoted to a survey of both 
1/e and the intrinsic charge correlation C(r) in the regime where both the 
fugacity z and F - 4  are small, i.e., near the critical point at zero density 
( F =  4). First, according to the survey in Section 3, the multipolar 1/r 4 con- 
tributions cancel out in C(r). Our analysis consists in the simultaneous 
resummations of the low-fugacity expansions of C(r) and l/e, which is 
related to the second moment of C(r) via the linear response theory. In the 
considered regime, we have to retain in the expansion for 1/e all the terms 
zZN/(F_ 4)2N 1 which are of the same order. These terms arise from the 
large-distance behavior of C(r). We stress that both leading and subleading 
parts of the asymptotic expansion of C(r) do contribute. The study of C(r) 
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at the order z 4 exhibits the partial screening of a given pair by a smaller 
pair which behaves as a polarizable dipole. Then, the generalization of this 
mechanism of nested pairs gives a recurrence scheme for handling the 
higher-order terms. This leads to a system of coupled differential equations 
for C(r) and the above quantity 1/~(r), which comes out in a very natural 
way. In fact, this system proves to be equivalent to the coupling constant 
flow equations of the RG(14'ls); thus, the coupling constant at the fixed 
point is to be identified with F/e, as already suggested in the literature. 
Moreover, the solution C(r) of our resummation equations turns out to 
have the same structure as the effective pair correlation postulated by 
Kosterlitz and Thouless. Hence, the basic idea of these authors is sup- 
ported by the present analysis starting from first principles, at least near 
the zero-density critical point. On the other hand, the asymptotic behavior 
of C(r) takes the form A(r)/r r/~, where A(r) goes to a constant; this ensures 
that C(r) indeed behaves as the correlation between external charges. 
However, A(r) is an infinite sum of terms l/r N(r/~-4) (N/> 0) which all con- 
tribute to 1/e. Finally, in our approach, the signal of the transition directly 
appears as the nonanalyticity of l/t,  which happens to coincide with the 
divergence of the low-fugacity series of this quantity. 

2. DESCRIPTION OF THE MODEl. 

The two-dimensional Coulomb gas (CG) is a neutral system made up 
of two species of particles with the same mass but opposite charges _+e 
(e>0) ,  which move in a plane surface and interact via the pairwise 
two-dimensional Coulomb potential vc(r) (r is the distance between the 
interacting particles). This potential is defined as the solution of the 
two-dimensional Poisson equation 

V2vc(r) + 2~6(r) = 0 (2.1) 

and it takes the logarithmic form 

vc(r) = - l n ( L  ) (2.2) 

(L is an irrelevant length scale which fixes the origin of the potential). The 
attraction between oppositely charged particles competes with the thermal 
motion and gives rise to two kinds of phenomena. 

In the first place the point particle model introduced by Hauge and 
Hemmer (1) is unstable for the temperatures lower than Tu=e2/2kB, 
because at short distances the attraction between oppositely charged 
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particles makes the system collapse. In order to prevent this collapse, we 
introduce a sufficiently repulsive short-range pairwise interaction w+_SR 
between these particles. Thus the basic two-body potentials are (with 
obvious notations) 

SR v + + (r) = e2vc(r )  + w + + (r) 

~+ (r)=--e2Vc(r)+w~+%(r) 

v (r) = eavc(r )  + w sR (r) 

(2.3) 

The short-range interactions wS+n+(r) and W SR (r) are not essential for the 
stability of the system and may be omitted. Moreover, as far as long-range 
effects are concerned, the precise form of the short-range potentials is not 
crucial; so, for technical reasons, we shall consider various kinds of 

SR w+ +(r),  wS~_(r) ,  and wS+ R (r) in the following sections. For instance, the 
use of a hard-disk model is most appropriate for the resummation of the 
low-fugacity expansions (see Section4). On the contrary, in order to 
handle the BGY hierarchy (see Section 5), it is convenient to define the 
short-range potentials in such a way that the whole potentials v+ +, v+ , 
and v__ are differentiable everywhere. Thus, the finite CG, with 2N par- 
ticles moving in a surface of area A and interacting via the potentials given 
by (2.3), has a well-behaved thermodynamic limit, whatever the values of 
the temperature T and the density of each species p = - p +  = p  = N / A  
may be. (16) 

Second, for the temperatures lower than T,, the long range of the 
logarithmic Coulomb attraction between positive and negative charges 
binds them in pairs with a finite polarizability; for fixed small values of the 
density, the infinite system undergoes a Kosterlitz-Thouless (KT) tran- 
sition between a high-temperature conductive phase and a low-temperature 
dielectric phase. The transition is not signaled by thermodynamic 
singularities, but by the discontinuity of the inverse of the dielectric 
constant e which characterizes the electrical properties of the system. The 
present dielectric constant e is defined through the linear response of the 
infinite system to an infinitesimal external charge distribution qext. When 
the external charge distribution q~xt(r) is immersed into the infinite fluid, 
there appears a total charge distribution 6qtot(r), which is the sum of q~xt(r) 
and of the corresponding charge density induced in the system. In the 
linear regime, the Fourier transforms q~xt(k) and 6qtot(k ) are proportional 
to each other, 

1 
6qtot(k) = ~ qex~(k) (2.4) 

~tK) 
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and e is defined through the response function e(k) in the limit of a uniform 
external distribution (that is, an extended distribution with spatial varia- 
tions which are very slow with respect to the mean distance between the 
particles of the system), 

5 -  lim e(k) (2.5) 
k ~ 0  

In a conductive phase, the infinitesimal uniform external charge is perfectly 
screened, 5qtot(k)= 0 and then e is infinite, whereas in the dielectric phase, 
the screening is only partial, &qtot(k)#0 and e is finite. 

Using the linear response theory, one easily relates e to the internal 
charge-charge correlation C(r) of the infinite system, 

C(r) = lim 6(x~- 0) - e 2 &(Y~- 0) 
T L  i ~  1 

[ __~ 6(xj- - r ) - -e  ~ 6 (y j - - r ) ] )  (2.6) • 
ej  t j=l 

[In (2.6) TL means "thermodynamic limit" and <-.- ) denotes the thermal 
equilibrium average; the positions of the charges with positive (negative) 
sign is denoted by xi (Yi)-] The relation is 

1 
= 1 -/~vc(k) C(k) (2.7) 

e(k) 

so that 

1 l+~f12 fdrrZC(r) (2.8) 

Notice that there exists another definition for e, which proves to be equiva- 
lent to the previous one. In this definition the linear response theory is used 
to calculate the effective potential v]~ between two infinitesimal point 
charges q~ and qp immersed in the infinite system. This potential is defined 
through the first-order difference between the free energy of the fluid with 
both charges in it and the sum of the free energies associated with the 
creation of the polarization clouds when the charges are immersed 
separately into the system. According to the linear response theory, one 
finds 

"~ vc(k) (2.9) 
v~(k) = q=q~ e(k) 
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where we have used (2.7) to make 1/e(k) appear. In the dielectric phase, 1/e 
is finite and the linearly screened effective potential becomes proportional 
to the bare Coulomb interaction at large distances. On the contrary, in the 
conductive phase, 1/e(k) goes to zero as k vanishes and the large-distance 
behavior of the linearly screened potential differs from the Coulomb law; 
both localized and extended infinitesimal external charge distributions are 
perfectly screened in this phase. 

According to (2.8), the KT transition is also characterized by a 
qualitative change in the behavior of the correlations of the CG. In the 
conductive phase C(r) obeys the so-called Stillinger Lovett sum rule ~7) 

2 
f dr rZC(r) - (2.10) 

which is a direct consequence of (2.8) with ~ = oo. This sum rule no longer 
holds in the dielectric phase. According to the analysis by Martin and 
Gruber, (18~ this breakdown of the Stillinger-Lovett sum rule implies that 
some particle correlations decay algebraically at large distances in this 
phase. Indeed, by using the BGY equations, these authors have shown 
that, if the two-body correlations decay faster than 1/r 4 and if the three- 
and four-body correlations decay faster than 1/r 3, then the sum rule (2.10) 
is satisfied (these conditions are fulfilled in the conductive phase where 
all the correlations are expected to decay exponentially). The particle 
correlations of interest, ps T ..... (ri ..... r~), are defined as 

T r 
P s i  . . . . .  ( 1 . . . . .  r n )  

=l im 6+,si ~ 6 ( x j - r i ) + 6  s, 6 ( y j - r , )  (2.11) 
T L  j =  1 ' j =  1 nc 

where si denotes the sign of the considered species, the superscript T 
indicates a full truncation with respect to all the partitions of {r~ ..... rn}, 
and the notation [. . .  ]no means that only the contributions of points which 
do not coincide must be retained. These particle correlations are related to 
the usual Ursell functions by 

Psi ..... ( r l  ..... r . ) = p % 1  . . . . .  ( r l  ..... ro) (2.12) 

Notice that the charge-charge correlation C(r) can be expressed in terms 
of the particle correlation as 

C(r)=2eZp~(r)+e2[pr+.(O,r)+pr (O, r ) -  2p~_(O, r)] (2.13) 



172 Alastuey and Cornu 

3. ANALYSIS  OF THE L O W - F U G A C I T Y  EXPANSIONS 

In this section, we consider a Coulomb gas made up of charged hard 
disks with a diameter o-. Then the short-range potentials in (2.3) reduce to 

SR SR ~ (3.1) w++(r)=w (r)=w~+%(r)= 00, r<• 
( O, a < r  

Furthermore, for the sake of simplicity, we shall take L = a .  For the 
present symmetric version of the CG, 

T T p + + ( r ) =  p __ (r) (3.2) 

and similar identities hold for correlations between more than two par- 
ticles. The charge-charge correlation given by (2.13) can then be rewritten 
a s  

C(r) = 2eZp6(r) + 2e2[p T+ + (0, r) - p r+ _ (0, r)] (3.3) 

The large-distance behavior of the particle and charge correlations will be 
studied by expanding the formers in powers of the fugacity z. This analysis 
is allowed in the dielectric phase because all the terms of these expansions 
are well defined C19) for F >  4. In Section 3.1 we introduce the grand canoni- 
cal ensemble. In Section 3.2 we show that the particle correlations decay 
algebraically at each order in the fugacity, and we determine the dominant 
powers for the two-, three-, and four-body correlations. Some comments 
are given in Section 3.3. 

3.1. Grand Canonical  Ensemble 

We start from the grand canonical ensemble representation for a finite 
system which occupies a surface with an area A. We introduce space- 
dependent dimensionless fugacities z+(r)  and z (r) for each species. The 
corresponding grand partition function 2A is 

i= ~ - - - ~ z + ( x i )  z - ( Y i )  

x exp[-/~V2N(X 1 . . . . .  X N ;  Yl,--., YN)] (3.4) 

where V2N is the electrostatic interaction energy of 2N charged hard disks, 

( ) In V2N(Xl , . . . ,XN;Yl  ..... yN)= - - ~  ~ In -- 
i ~ j  G i " 

+ ~ l n (  Ix/ (3.5) 
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The integration domain ~N is included in A 2N and is such that all the par- 
ticles are separated by a distance larger than a. In the definition (3.4) the 
summation is performed over neutral systems. One could define another 
grand partition function by summing also the contributions from the non- 
neutral systems. Both definitions become equivalent in the thermodynamic 
limit. The particle correlations (2.11) of the homogeneous (neutral) infinite 
system are given by 

r r = lim . . . .  P,1 ..... ( 1 ..... rn) z ~ 6 ~ lnsA 
TL 6Zsx(rl)... 6zs,(rn)lz+(r)=z_ir)= z 

(3.6) 

In (3.6) the functional derivative is calculated for uniform fugacities 
z + ( r ) = z _ ( r ) = z  and the thermodynamic limit is taken at fixed z, /3, and 
ri ( i=  1,..., n). The equilibrium state of the infinite system is entirely 
specified by the two dimensionless parameters z and F=/~e 2. 

The expansions of the particle correlations in entire powers of the 
fugacity z are obtained by using the definition (3.4) in (3.6) and by taking 
the thermodynamic limit in each term. The expression of the term of order 
z "+p is an integral over p field points (with the n root points rl,..., r ,  kept 
fixed). In general, these integrals are well defined only for systems with 
short-range integrable potentials. On the contrary, for three-dimensional 
Coulomb systems with the familiar 1/r potential, all the coefficients of these 
expansions diverge. However, in two dimensions, the situation is quite 
different because of the confining character of the logarithmic Coulomb 
potential. Indeed, Speer ~19) has shown that all the above coefficients are 
finite for F > 4 .  However, the related integrals are only conditionally 
convergent, because there are residual dipole-dipole interactions between 
neutral clusters of charges which are far away from one another (these 
interactions decay only as 1/r 2, which is the border power for integrability). 
The analysis of the way in which the contributions of the boundary regions 
of the finite system vanish in the thermodynamic limit gives a prescription 
for handling the contributions from these configurations: one must first 
perform the angular integration over the orientations of the neutral cluster 
which is sent to infinity/19) 

3.2.  T e r m - b y - T e r m  A n a l y s i s  

In the dielectric phase F is always larger than 4. Consequently the 
above fugacity expansions can be used for studying the large-distance 
behavior of the particle correlations. In this subsection, we restrict 
ourselves to a term-by-term qualitative inspection of such behaviors. This 
survey is carried out with some detail for the terms with the lowest order 
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in z and the main arguments are briefly sketched for the higher-order 
terms. We explicitly consider only the two-, three-, and four-body particle 
correlations. 

At the order z 4 included, we have (for r~2 = Ir 1 - r2l > 0-), 

r z4f dyldy2{~ . 
P++(rl 'r2)----~ -~ 2 0-2 o.2 exp[--/~V4(rl ,r2,yl ,Y2)] 

- exp[ -~V2(rt ; y~)] exp[ -/?V2(r2; Y2)]} 

+ O(Z 6) (3.7) 

and 

Z 2 
= - -  exp[- /?Vz(r l  ; r2)] p T  ( r l ,  r2 ) 0 -4 

z 4 f~ dxi dyl 
+ ~ _ _ 2  a 2 0-2 {exp[ - /~V4(r l ,x l ; rz ,  Yl)] 

- exp[ -/?V2(rl ; r2) ] exp[ - /~ V2(xl ; Yl)] 

- e x p [ - / ? V 2 ( r l ;  Yl)] exp[-/~V2(x~; rz)]} 

+ O(z 6) (3.8) 

The expansion (3.7) begins at the order Z 4 only, because there are no 
neutral configurations involving two identical charges at the order z 2. The 
integration domain ~P is R 2p minus the region corresponding to the con- 
figurations where one (or more) relative distances between the field or root 
points is less than a. Notice that the integral in the right-hand side of (3.8) 
is only conditionally convergent and must be calculated according to the 
general prescription given in Section 3.1. 

The large-r12 behavior of the z 2 term in (3.8) is obvious, since the 
latter reduces to (zZ/a4)(a/r12) r. In order to study the z 4 terms in (3.7) a n d  
(3.8), we first remark that the most probable configurations of the field 
points are such that each of them is close to another field or root point 
with an opposite charge. These configurations are drawn in Figs. la and lb 
for r For such configurations, the pairs p + + and in Figs. 2a and 2b for p r + _ .  
of opposite charges behave as dipoles, as far as their electrostatic inter- 
actions with the other charges are concerned. Their contributions to the 
asymptotic behaviors of r r p + + and p +_ are obtained by expanding V4 in 
powers of the sizes of the neutral pairs. This method is illustrated below for 
every configuration. 
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Yl"-- G 

(a) (b) 

Fig. 1. The most probable configurations of the field points (Yl, Y/) which contribute to 
pT+ + (0, r) at the order z 4. A circle with a positive (negative) sign inside represents a hard disk 
carrying a positive (negative) charge. 

3.2.1. C o n f i g u r a t i o n  of  Fig. 2a. First, V 4 is rewritten as 

V4(r~, Xl; r2, Yl)=e21n tl + e  21n t2+ U(~ ,  ~2) (3.9) 

where t l _ = r l - y l  and t 2 = x l - r 2 ;  ~@1 (~@2) denotes the neutral pair 
{ O  r,; O Yl) ( { O  xl; G r2}) and U(~ ,  ~ )  is the electrostatic inter- 
action between these pairs. When the pairs 1 and 2 are small compared to 
their relative distance r12, U(~ ,  ~ )  can be represented by the multipole 
expansion 

U(~l,~2)=e 2 ~ (-1)" 
n = 2  n! 

- -  F(tl " g + t 2  "V) n -  (tl "V) n -  (t2-V) n] 

 'n(r17  ) /3 0a, 

The first term in (3.10b), i.e., the term n = 2  in (3.10a), is the usual dipole- 
dipole interaction potential, which decays as 1/r~2 when r12 ~ ~). In this 
limit the electrostatic interaction U(~ ,  ~2) goes to zero, so that the 
Boltzmann factor exp[--/~U(~, ~2)] can be expanded in a Taylor series 

(a) (b) 
Fig. 2. The same as Fig. 1, ~ r  p~_(0 ,  r) and the field points (xl,  y~). 

822/66/1-2-12 
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with respect to /3U(~1, ~ ) .  The contribution of the considered configura- 
tion to pr+ (rl, r2) at the order z 4 then becomes, according to (3.8), 

z~_~ ft~ dt~ ( dt2 G F E  T F /~2U2 

where we have taken into account that the zeroth-order term in flU in the 
expansion of exp(-/?V4) is exactly compensated by the term 

exp[ -/~ Vz(rl ; Yl)] exp[- -/3V2(xl ; r2)] = (a/tl) r (~/tz) r 

Moreover, we have replaced 9 ]  by @1| and we have omitted the 
term exp[- /~Vz(r l ;  r2)] exp[- /3Vz(xl ;  Yl)]- Such approximations can be 
justified a posteriori, since they introduce corrections which decay faster 
than the expression (3.11) [-see also Appendix A for a detailed survey of the 
large-r~2 behavior of the integrals involved in (3.7) and (3.8)]. The linear 
term in U does not give any contribution to (3.11), as a consequence of the 
rotational invariance of the weighting factors (a/t1) r and (~/t2) r combined 
with the harmonicity of the Coulomb potential. Indeed, once the angular 
integrations over the orientations of tl and t2 have been performed, the 
operators (ta" V)" and (t 2 - V)" either vanish, if n is odd, or become propor- 
tional to (V2) "/2, if n is even: in both cases the action of these operators 
onto ln(I r~-  r21/o) gives zero for r~2 ~ 0 by virtue of the Poisson equation 
(2.1). The first nonvanishing contribution to (3.11) arises from the qua- 
dratic term in U. According to (3.10b), the latter reduces to the square of 
the dipole dipole potential between the pairs N~ and N2 when r12-* oO. 
After a straightforward integration over the sizes and orientations of the 
dipoles, we find that the contribution of the configuration in Fig. 2a to 
p r  (rz, r2) behaves as + 

~ 4 ( F _ 4 )  2 ~ + o  (3.12) 

when r12 ~ oe. In deriving (3.12), we have implicitly used that F is larger 
than 4 when computing the integral 

dt ( t ) r t 2  2~a2 (3.13) 
f,>o ~5 - F - - 4  

This integral is related to the polarizability of a single pair in the vacuum. 
When F ~ 4 + this quantity diverges and it is infinite for F < 4. 

3.2.2. Conf igura t ions  of  Figs. l a and lb .  These configura- 
tions are similar to the configuration of Fig. 2a since they consist of two far 
away interacting neutral pairs. They give identical contributions to p r + +  

and the sum of these contributions behaves as (3.12). 
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3.2.3. Configuration of Fig. 2b. In this configuration there is 
only one neutral pair ~ = { @ x 1; @ Yl } interacting with the two far away 
charges {@r l}  and {@r2}. Using the notations t = x l - y l  and R -  = 
(Xl + yl)/2, the part of V 4 which has to be treated perturbatively behaves 
as 

e2(t-VR) I l n ( I R - r l ] ) - l n ( [ R ~ r 2 1 ) ] o .  (3.14) 

for t small compared to ]R-r~F and IR-rel .  For the same reasons as 
those exposed in the study of (3.11), the leading behavior of the configura- 
tion of Fig. 2b is entirely governed by the quadratic term in the expansion 
of the Boltzmann factor associated with (3.14). Changing from the 
variables (11, Yl) to (t, R), we find that the leading term in this expansion 
is 

o 4 2  ~ : ~ -  ~-2 

•  2 o .  (3.15) 

The dominant contributions to the integral in (3.15) arise from the region 
where IR-r~l  and [ a - r e l  are large (but smaller than r~2). Consequently, 
the leading behavior of (3.15) is not affected by the replacement of 9 2 by 
the disentangled conditions t > o. and IR - ril > a (i-- 1, 2). The latter con- 
dition on R can be viewed as an arbitrary cutoff which prevents spurious 
divergences associated with the nonintegrability of [VR ln(IR-ri[/o.)] 2 at 
R = r i. With this prescription, we find that (3.15) behaves as 5 

2 4 / " 2 ( 0 " )  r ~ .dRf, dt (o.) r 

0 -4 2 ~ OlR_rll, IR--r2]>cr 7 >a ff'~ 7 

-- Z4 ~I~2 ( r ~ 2 ) F f  dR  
0 -4 2(F-- 4) IR rll, IR -- r21 > 

• { g .  I ln  (IP" ; r l l )  -- In ( IR ~-r2'-)1}2 

z4 2zt2F2 ( ~ ~r  In (5-~) (3.16) 
0 -4 F - - 4  \r12/ 

This calculation already appeared in the evaluation of the first nontrivial contribution (in a 
low-temperature expansion) to the vortex correlation of a classical planar Heisenberg model 
made by Jose et aL ~2~ 
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when r12 - +  O0 [the last line of (3.16) follows from an integration by parts 
and the use of the Poisson equation (2.1)]. 

It can be checked that the above configurations indeed give the domi- 
nant contributions to the large-q2 behavior of Or+ +(r~, r2) and Or+ (r~, r2) 
at the order z 4. More precisely, we get (with obvious notations) 

Z 4 71.2r '2 ( 0 - ~  4, 
p r+(4+)(rl, r 2 ) ~ p  r+(~(rl, r2 )~  a4 ( F - 4 )  2 \ r12/  r12 -* oo (3.17) 

The asymptotic behavior (3.17) does not depend on the sign of the charges, 
because it is entirely determined by the fluctuations of the dipole carried by 
a root charge and its opposite binding charge. Furthermore, the expression 
(3.16) is the first correction to the leading term (3.17) of the asymptotic 
expansion of p T(4)(rl, r2); the corresponding correction to p r+(4+)(r~, r2)is at 
least O(1/rr2) and decays faster than (3.16). 

The analysis of the terms of order z 2 N  ]Jn T(2N)[p+ + I,=1, r2) and p+n T(2N)tpI,=I, r2), 
can be performed through a straightforward generalization of the previous 
method. The dominant contributions to the large-q2 behaviors of these 
terms 6 arise from the configurations (~neutral where all the particles belong ~ ab 
to neutral ensembles g].utr,l and ~b'~'~ which contain the particles located 
at r I and r 2, respectively, and whose sizes are small compared to r12 (these 
configurations are similar to those of Figs. la, lb, and 2b). In order to 
estimate these contributions, we split the total potential V2N as 

V 2 N  = W a -~- W b + Uct b (3.18) 

where Wa and Wb are the electrostatic energies of r neutral and ~n~t~al - - a  ~ b  , 
respectively, and U~0 is their mutual interaction potential. Since the dis- 
tance r12 between N neutral and ~n~mr~ is large compared to their extension, - - a  ~ b  
the potential U~b behaves as a dipole-dipole potential, i.e., 

U ~ b ~ ( P ~ ' V ) ( P b ' V ) l n (  lrl-r2[)~r (3.19) 

where Pa and Pb are the dipoles of (~o neutral and ~neutral respectively. In the 
large-r12 limit, Uab goes to zero and the Boltzmann factor exp(-~U~b) can 

6A priori, there are also contributions from configurations {~-~aneutral' gbneutral, ~lneutral,'", 
$]eutr~l}, where the neutral ensembles g~eutral (i= 1 ..... n) contain only field points and are 
located between r 1 and r 2. These contributions involve products of dipole~lipole convolu- 
tion chains connecting g~utral to 8~ ~utral. It turns out that these convolution chains vanish 
in two dimensions, in contrast to the three-dimensional case, where they behave as the 
dipole-dipole potential itself, as shown by HOye and Stell. (21~ 
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be expanded in powers of flUab. The contribution O. f eab('~neutral then takes the 
form (up to numerical multiplicative constants arising from combinatories) 

z2N f d o~neu t ra l  ddo~utral[exp(__flWa)] r [-exp(-- f lWb)]  T 

( 22 ) Uab 
x - - f l U ~ b + ~ . ~  + " "  (3.20) 

,4,k,a neu t ra l  In (3.20), dg]  entral and -oh denote spatial integrations over the posi- 
tions of the field points belonging to doneutral and do~eutral, respectively; 
furthermore, the weighting factors [-exp( --BWa)] r and [exp( -- flWb)] r are 
truncated with respect to all the partitions of the truncation processes of 
exp(--flV2N) involved in the integrals which define 0r(~m(rl,r2) and 
~Or+(2_N)(rl, rz). The expression (3.20) has the same structure as (3.11). Using 
again the rotational invariance of [ exp ( - f lW~) ]  r and [-exp(--flWb)] r as 
well as the harmonicity of the Coulomb potential, we find that the linear 
term in U~b in (3.20) does not give any contribution [-as in (3.11)]. The 
leading term of the agymptotic behavior of (3.20) then arises from the 
quadratic term in U~b. According to (3.19), it behaves as 

/~2 2N 
z I ddoneutral i toneut ra l r -  O ~ a~b [_expt-flWa)] r [exp(--flWb)] r 

1 ~ neut ra l  r 
- 4 a~-a Lexpt--fl Wa)] 

x{fddo~eutral[-exp(-flWb)]vp2} 1-1- rl 24 (3.21) 

since the integrals related to the average of p2 with the weighting factor 
[ e x p ( - f l W ) ]  T are convergent for F > 4  and for any considered neutral 
e n s e m b l e  doneut ra l  [ - a s  the integral (3.13) in the case where d o reduces to a 
single pair]. The asymptotic behavior of/i"~ T(2N)/r+ + I, 1 , r2) and v+-"~T(2N)trt'l, r2) is 
obtained by summing all the contributions (3.21). In this summation one 
must properly take into account all the ways of labeling the field points 
which belong to gneutral and .~oneutral respectively, as well as the symmetry - - a  V b  
factors attached to each diagram defining "~T(2N)(" v++  t - l , r2)  and pr+(~)(rl,r2). 
Using also the invariance of [ e x p ( - f i W ) ] r P  2 with respect to the change 
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of sign of all the charges belonging to gn~utr,1, we find that the total 1/r42 
contributions to ,, r(2N)[r ~ T(2N)lr t-" + + t ' l  r2)  and r2) are identical, i.e., , U + -- t~l 

p T (2N)[~  ++ , q , r 2 )  pr+~2N~(rl,r2)~z2NC~2lv(F) 4 (3.22) 
r12 

In (3.22) ~2N(F) is a dimensionless coefficient which diverges when F--+ 4 +. 
Its evaluation becomes rapidly intricate as N increases, because of the 
combinatories and the difficulty in explicitly computing the averages of p2 
weighted by [exp( - fi W) ] r. 

The previous analysis can also be applied to the three- and 
four-particle correlations (and to any higher-order correlations of 
course). Because of the symmetric nature of the present CG, we only 
have to consider p++T + ( r l ,  r2 ' r3),  p + + r  _ ( r l ,  r2 ,  r3)  ' p + + r  + + ( r l  ' r2 ' r3 ' r4),  

p r  (r I 1'2, r3, r4) , and pr _(r 1 r2,  r3, r4). Again, at any order Z 2N, + + +  ~ -t-+-- a 

the dominant contributions to the large-distance behaviors arise from con- 
figurations where all the field points belong to neutral clusters attached to 
one isolated root point or to a set of several close root points. The corre- 
sponding potential V2N is split in a way similar to (3.18), and the 
Boltzmann factor exp(-flV2N) is expanded with respect to the mul t ipol~ 
multipole interaction potentials between the neutral clusters. Finally we get 
(omitting the coefficients and the possible angular dependences) 

1 RT(2N) [ r  .~ T(2N) (r  
+ + + t ' l ,  r2,  r 3 ) ~  F + + - t - l ,  r2,  r3)  ~ - ,  r13 --+ ct3, ra2 fixed (3.23) 

El3 

1 p T(2N)  (, .  ++ t- l , r2,  r 3 ) ~ - ,  r12-+oo, rl3fixed (3.24) 
r12 

p T(2N)  ( r  n T(2N) [ r  
+ + + t ' l ,  r2,  r3)  r2,  r3)  ~p"  + + _ k = l ,  

1 
r2 2 2 , r12 , r13 , r23 --+ oo (3.25) 

12r13F23 

pT(2N) (,. ~/~T(2N) ( r l ,  r2 ' r3 r4 ) + + + +~,~1, r2,  r3~ r4)  r + + + -  

1 
- 7 - '  r14 --+ o0, r12 , r13 fixed (3.26) 
El4 

R T ( 2 N )  ( r l ,  r2 ' r3 ' ,. ~ ~T(2N) + + +  " 4 ) ~ P  + + - - ( r l ,  r2 ,  r3 ,  r4)  

1 
~ 77a-, r13 -+ oo, r12, rl4 fixed (3.27) 

r13 

pr(2N) (rl, r2, r3, r4)~714, r12 0% q3, q4fixed (3.28) + + _  --+ 
r12 
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pr(2U) (rl, r2, r 3 r4)~pV+(2+N) ( r l , r z ,  r3,r4 ) + + + +  

1 
---~-, r13 - *  00 ,  r12 , r34 fixed 
?'13 

1 
p T ( 2 N )  ( r l , r2 ,  r3, r 4 ) ~ 1 3  r13_+oo, r12, r34fixe d +-t--t- 

I p T(2N) #r + + -  t-l ,  r2, r3, r4 )~  75-, r12 ~ 00, r13 , r24 fixed 
r12 

pT(2N)  / 'r ~ ~  (rl,r2, r3 r4) + + + + ~ = 1 ~  r 2 ,  r3~ r 4 )  r + + +  

~t~ T(2N) (rl, r2, r3 r4) 

1 
r2  2 2 ~ r13 ~ r14 ~ r34 + 00 ,  

13F34r14 

t~T(2N) (rl, r=, r3, r4) r+++nr(2N) - ( r l ,  r2, r3, r4)Me + + - -  

1 
" 2 2 2 ' r12 , r13 , r23 ~ 00,  

r 1 2 r 1 3 r 2 3  

0 T(2N) (rl,  r2, r3, r4) r+++ar(2N) +(rl,  r2, r3, r 4 ) ~ r + + +  

~ p ( r l .  r2. r , )  

1 1 
h 2 2 2 2 2 2 2 2 

r 1 2 r 2 3 r 3 4 r 4 1  r 1 3 r 3 2 r 2 4 r 4 1  

1 
-~ 2 2 2 2 ~ r ij --+ ~ 

r 13 r34 r42 r21 

(3.29) 

(3.30) 

(3.31) 

r12 fixed (3.32) 

r14 f ixed (3.33) 

(3.34) 

The above behaviors are understood to be valid at any order z 2N, with the 
possible exception of the first-order terms, which may decay faster [for 
instance, ~++_.oT(4) decays faster than (3.23)]. Furthermore, for some special 
asymptotic configurations of the root points, the three- and four-particle 
correlations decay slower than the two-particle ones: in these configura- 
tions, either there exists at least three (or more) far away sets with at least 
one root point in each of them, or there are two far away sets with two (or 
more) root points in them. For  the first kind of configuration, such as 
(3.25), the products of the 1/r 2 terms arise from the products of dipole- 
dipole interactions between a given neutral cluster and two different other 
ones. For  the second kind of configuration, the two neutral clusters 
attached to the two sets of root points are no longer invariant under rota- 
tions and the resulting averages of the multipole-multipole interactions do 
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not necessarily vanish. For  instance, the 1/r 3 and 1/r 2 terms in (3.30) and 
(3.31) arise from quadrupole-dipole interactions and from dipole-dipole 
interactions, respectively. 

3.3.  C o m m e n t s  

In order to make a rigorous estimation of the large-distance behaviors 
of the particle correlations by starting from the above term-by-term 
analysis of the low-fugacity expansions, one should calculate explicitly the 
coefficients involved in (3.22)-(3.34), resum the corresponding series in z 2, 
and control the series of the rests. This is a formidable task, which is far 
beyond the scope of the present paper. At this level, and as will be 
discussed in Section 4.3, it is reasonable to assume that the z-expansions 
converge for F > 4  fixed and z sufficiently smallT: the particle correlations 
should then decay as each term of the expansions. In Section 5, the corre- 
sponding decays will be shown to be compatible with the asymptotic 
structure of the BGY equations. Moreover, they do not satisfy the condi- 
tions found by Martin and Gruber (18) for a conducting system: the phase 
is dielectric. 

The large-distance behaviors predicted by our analysis are very similar 
to those relative to classical neutral molecules carrying permanent dipoles 
in three dimensions. (13~ The correlations between two molecules with given 
orientations of their dipoles indeed decay as 1/r 3, i.e., as the dipole~tipole 
potential. (25) Once the integrations over these orientations have been per- 
formed, the residual position correlations decay faster, as 1/r 6, which is the 
square of the dipole-dipole potential. (13) In our system, the four-particle 
correlations p~_ and the two-body ones (either p r or pr+ ) are the + - - +  + +  

analogs of the full molecule-molecule correlations and of the reduced 
position-position correlations, respectively. 

The above behaviors are not special to the present symmetric version 
of the CG. In fact, one always has the same kind of power-law decays, 
whatever the precise form of the short-range potentials w++,sR w+SR , and 
wS_ R_ may be. Only the coefficients in front of these power laws depend 
on the latter, through integrals of the form (3.13), for instance, with 
e x p [ - / ~ v + _ ( t ) ]  in place of (~/t)  r. Furthermore, we point out that 
p r  +(r),+ pr+_(r), and p r  (r) have exactly the same decay when r ~  o% 

7 For a gas of permanent dipoles, Gawedski and Kupiainen ~=~ have proved that the fugacity 
expansion of the pressure has a finite radius of convergence. This result has been extended 
to the hierarchical dipole gas by Benfatto et  aL (23). Dimock and Hurd should be able to 
prove the analyticity of the pressure in z near z = 0 for the CG, on the basis of their recent 
paper. (24) 
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even in the case of nonsymmetric CG in which pT++(r) and p~ (r) are 
not identical at finite distances. Similar large-distance identities between 
higher-order correlations hold as in the symmetric case. 

4. R E S U M M A T I O N S  N E A R  T H E  Z E R O - D E N S I T Y  
C R I T I C A L  P O I N T  

As in Section 3, we consider a symmetric CG made of charged hard 
disks. We study the large-distance behavior of the charge correlation C(r) 
in the dielectric phase near the zero-density critical point, where both z and 
( F - 4 )  are small parameters. This analysis starts from the low-fugacity 
expansion of C(r): at a given order z 2N, the large-distance behavior of 
c(2N)(r) is determined by replacing ~T(ZN) and t~T(2N) in (3.3) by their / - ' + +  t ~ + _  

asymptotic expansions. According to (3.22), the multipolar 1/r 4 contribu- 
tions from the particle correlations cancel out. The detailed study of the 
orders z 2 and z 4 suggests that the remaining terms should decay as 1/r r 
multiplied by powers of ln(r/a) with coefficients which diverge when 
F ~ 4  +. In the regime where z and ( F - 4 )  are of the same order, these 
divergent terms are resummed via a recurrence method which leads to a 
system of coupled differential equations. In the latter, the dielectric 
constant 5, which appears in a very natural way, must be calculated self- 
consistently with the asymptotic behavior of C(r). This is due to the fact 
that the dominant contributions to the integral expression of e given by 
(2.8) arise from the large distances, in the limit F ~ 4  +. At every order 
z 2N, these contributions diverge like 1 / ( F - 4 )  2 N -  1, as a result of the non- 
integrability of r2C(2N)(r) at F = 4  when r-+ m. In the present limit, all 
these contributions are equivalent and consequently must be indeed 
resummed. 

In Section 4.1 we first describe the above method, which is composed 
of four steps. The first two steps deal with the rigorous study of the z 2 and 
z 4 terms. A recurrence scheme for handling the higher-order terms is then 
introduced. The final step consists in deriving the required differential 
equations which incorporate the full resummation of the low-fugacity 
expansions in a systematic way. The results are displayed in Section 4.2 and 
are discussed in Section 4.3. 

4.1. M e t h o d  

Step  1. The Order z 2. The Z 2 term in the expansion of C(r) 
obviously reduces to 

C (2~(r) = - 2 e  2 7a (4.1) 
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Its contribution to 1/e is readily obtained by inserting (4.1) in (2.8), with 
the result 

( ~ ) ( 2 )  --27Z2/" Z2 ~-~-~ (4.2) 

where (l/e) (2N) denotes the term of order z 2N in the expansion of 1/e. In the 
limit F ~  4 +, (4.2) behaves as 

z2 
= --8~2 F _ 4 + o  ~ (4.3) 

The point is that the divergent behavior (4.3) arises from the large- 
distance contributions of C(2)(r) to 1/e. Indeed, when splitting the integral 

~2fl I v dr r3C(2)(r) (4.4) J~ 
into 

~2fl ;i dr r3C(2)(r) + ~2fl fl ~ dr r3C<2'(r) (4.5) 

where l is some given distance, we see that, when F ~ 4 +, the first integral 
in (4.5) behaves as -8n2z  2 In(l/a), whereas the second one exactly behaves 
as (4.3) whatever the value of l may be. This suggests that the leading 
z 2 / ( F - 4 )  contributions to (l/e) (2) can be calculated by using in (2.8) the 
limit form ~AS~t~(2)(r~ when F ~ 4  + of the leading term in the large-distance 
expansion of C(2)(r). Since C(~)s(r ) reduces in fact to C(2)(r) itself, we 
obviously can write at the order z 2 included 

- - -  s; 1 1 + rt2fl dr rg[c(~)s(r ) + ---] + o (4.6) 

and 

CAs(r) = --2e 2 ~-~ (1 + .--) (4.7) 

Equations (4.6) and (4.7) indicate that the calculation of CAs(r) at all 
orders in z 2 is linked to the corresponding determination of 1/e. This 
connection will appear more explicitly at the order z 4. 

Step 2. The Order Z 4. According to the detailed study of n T(4) and t - + +  
pr+~4) in Section 3.2, C(4)(~ASt-~ is directly obtained from (3.16), 

C(4)tr,_ 64n 2 2z4df_~rlndr ~ 
AS~ J - - - - F _ 4  e -~ (4.8) \ r )  \G) 
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The coefficient 1/(F-4)  arises from the integral (3.13), which is related to 
the z 2 term of the expansion of 1/e. Indeed, noting that 

( ~ ) r / ~ = ( ~ ) r e x p [ ( 1 - - ~ ) F l n ( r ) ]  

= 1 + ~  In +O(z  4) (4.9) 

we then see that it is tempting to reexponentiate [C~s~(r)+ (4~ GAs(r)3 
through a formula similar to (4.7). Furthermore, taking into account the 
identity 

f ; d r r 3 ( ~ )  r ( r )  1 (4.10) 
- - j -  in ( F -  4) 2 

we see that C~s(r) indeed contributes a term of order z4/(F-4) 3 to 1/a. 
This contribution reads 

;f~ 2567~4Z4 ( Z4 ) 
~2~ drr3C~s(r) = (r_4)~+o ~ (4.11) 

if we a priori assume a formula similar to (4.6). In fact, in order to extend 
Eqs. (4.6), (4.7) to the present order, one must first carefully control all the 
terms in the large-r expansion of C(4)(r) which decay like 1/r r [apart from 
possible powers of In(r/a)] in the limit F ~ 4  + and which might give 
contributions to 1/e of order z 4 / ( F - 4 )  3. Second, one must prove that 
these contributions can be calculated by replacing in (2.8) C(4)(r) by its 
corresponding truncated large-r expansion over the whole integration 
domain from a to infinity. These two points are investigated in Appendix A 
by starting from the integral representation of C(4)(r), 

C(4)(r) =e = ~-~ dv~ dr2 Vrl vr Ivl--r/al r Iv2-- r/a] r 

F F v2 Iv1 - r/o'[ 
vf  Iv2 -r/al r Ivl-v2[ r 

Vl r Iv2-  r/a[ r 2 ) 
- v  r Iv1- r/al r Iv1-  vzl r + I V l - v ~ J ~  (4.12) 

where the notation ~* means that the integration domain for vl and v2 
excludes the configurations such that any of the relative distances between 
the points 0, r/o-, vl, v2 is smaller than 1. This expression is easily obtained 
from the integrals defining r'++t~r(4) and pT+(4) in (3.7) and (3.8), where we have 
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symmetrized the corresponding integrands and introduced the dimen- 
sionless variables Vl and v2, which denote the positions of the field points 
in units of ~. The method consists in rewriting C(4)(r) as a part C~4)(r) 
which gives contributions to 1/e of order z4/(F - 4 )  3, plus a remainder 
which is uniformly bounded with respect to r and F. These uniform bounds 
are used to prove that this rest gives contributions to 1/e bounded by 
cst x z 4 / ( / ' - 4 )  2 and that C~4)(r) reduces to the first three terms in the 
large-r expansion of C(4)(r) where the involved coefficients are replaced by 
their limit forms when F ~  4 +. We find 

C~4)(r) _ 647z2e2z 4 (ff)v I (~ )  1 1 (~)F-41  
( F _ 4 )  a 4 in -- ~L~_ 4 + ~S-~_ 4 (4.13) 

while the contributions to 1/e of order Z4/(I " -  4) 3 can be calculated from 

rC2fl f oo dr r3C~4)(r) (4.14) 

as 
( z4 ) 

- ( V _  4)------- 7 + o  (F  ~ (4.15) 

Note that r'(4)tr~ indeed is the leading term (when r--, oc) in (4.13) and its ~AS~ ! 
contribution (4.11) to 1/e is twice the total contribution (4.15). The 
required extensions of (4.6), (4.7) at the order z 4 then read 

= l + g Z f l  drr3EC~2)(r)+C~4)(r)+ . - - ] + o  ~ (4.16) 

and 

z2[ CAS(r) = --2e2 ~-a 1 ( F -  4) ----------5 + ' (4.17) 

where we have used the obvious relation C(~2)(r) (2) = Chs(r). We stress that 
the subleading correction which behaves as (a/O r in (4.13) contributes to 
the resummation process of CAs(r) through the term of order z 4 in the 
constant prefactor in front of (a/r) rE1 + '1.  Moreover, it is understood that 
(1/8) (2) is replaced by its limit form (4.3) when F ~ 4  + 

Equations (4.16), (4.17) clearly illustrate the interplay between the 
resummation processes of 1/~ and CAs(r). However, since 1/e is determined 
by C~(r) rather than CAS(r), it is crucial to derive a resummation equation 
for C,(r). The latter could be formulated in a similar way to the expansion 
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for CAs(r) given by (4.17). However, such a formulation is not very con- 
venient because it introduces constant prefactors whose relation with 1/e is 
not a priori obvious, and furthermore it involves subleading terms, the 
number of which increases with N. For instance, the equivalent formula to 
(4.17) for C~(r) reads at the order z 4 

F 
C ~ ( r ) = - 2 - ~ 7 -  1 ~ + . - .  

32 2z  4 
- 2 - 7 -  + . . .  L ( r - 4 )  2 

4- . . .  ( 4 . 1 8 )  

In fact, the required equation for C~(r) will be further expressed in an 
integral form. The derivation of this equation starts from the following 
central observation originating from the present study of the z 4 term. As far 
as the calculations of (l/e) (4) and of the large-r expansion of C ( 4 ) ( r )  in the 
limit F--+ 4 + are concerned, it is legitimate to replace the expression (4.12) 
by the integral (see Appendix A) 

e2z4(~)v{f~, f ( )  - 2 7 -  dx dy a r 

x T ( x - y ) .  1~[2 ix_rl2fl j  

4- 0.2 < 0 .2 
<lx--r l<r/2  < ]y--x] Ix--rl 

x-}- ( x - y ) .  1~12 i x _ r l 2 j j  j (4.19) 

Since the quantity 

~ -  ( x - y ) "  ixl2 ix_rl2 (4.20) 

is nothing but the quadratic term in the expansion of the Boltzmann factor 
associated with the dipole-charge interaction potential between ~ and two 
opposite charges located at 0 and r, respectively, the configurations of 
(vl, v2) in (4.12) which contribute t o  C~4)(r) are associated with the physi- 
cal situation described in Fig. 3: a fixed neutral pair ~a0= {@ 0, @ r} of 
size r interacts with a smaller pair ~ = { @ x, @ y } which is essentially 
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/ x "\ // 
V 

Fig. 3. A typical configuration of the field pair ~ which contributes to C~4)(r). The strip 
delimited by the dashed line represents the pair N. 

located in one of the two disks with radius r/2 and centered on either 0 or 
r. The size of ~ is large compared to a, but remains small compared to r. 
Indeed, C~4)(r) can be immediately computed from (4.19) by neglecting Ixl 
( I x - r l )  with respect to r (Ixl) in the disk Ixl <r/2 ( I x - r ]  <r /2)  and the 
final result (in the limit F ~ 4 +) does not depend on the precise radius of 
the disks, which could be any fraction of r. Thus, C~4)(r) can be interpreted 
as resulting from the sole contribution of the single pair ~0 partially 
screened by the polarizable pair N via the operator 

_ f  a , rF2 ( x - y ) ' ~ 5  , I x / < ~  (4.21) 
~ ~  2 x , [ [  ( x - r ) ~  2 r 

( x - y )  ] x _ r [ 2  j , Ix - - r ]  < ~  

The corresponding expression for C~4)(r) then is 

e 2 z  4 / 0  . \  F 

where ~l~01>~b d~  means that one has to consider all the sizes, orienta- 
tions, and locations of ~ which satisfy the geometrical constraints defined 
in (4.19). Note that (4.22) exactly reduces to (4.13) only if one replaces the 
prefactor F 2 in the definition (4.21) of 5z~0(~) by 16 and 2 r a by 1. 
However, it is legitimate to keep this prefactor /-2 in our further calcula- 
tions because this does not affect the final form of C~(r) in the limit of 
interest. For a similar reason, one can replace the upper integration bound 
r/2 by r in the integral over ~ .  

Step 3. The Recurrence Scheme at the Order Z 2N. We shall assume 
that the part c~2N)(r) of c(2N)(r) which contributes to ( l /e)  (2N), the term of 
order zZN/(F--4) 2N 1 in l/e, still coincides with the limit form when 
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F ~  4 + of the truncated large-r expansion of c(2N)(r).  A rigorous deriva- 
tion could be in principle carried out by extending the method introduced 
in Appendix A to the integral representation of c(2N)(F) with 2 N - 2  field 
points. Here, we only guess the configurations of both root and field points 
which contribute to c~2U)(r) from the above physical interpretation of 
C~4)(r). Then, we briefly sketch the main arguments which lead to the 
generalization of the expression (4.22) at the present order z 2N. 

In the configurations which contribute to c~2U)(r), there are one fixed 
neutral pair ~o and N -  1 field neutral pairs ~ (i = 1,..., N -  1). Each field 
pair ~ ( i= 1 ..... N -  1) has a large size [this induces the 1/(F--4) divergen- 
ces] and can be viewed as nested in only one larger pair ~ (field or root), 
in the geometrical sense made explicit in Fig. 3 (with ~ in place of ~o and 
~,. in place of ~). In other words, all the field pairs ~ belong to chains of 
nested pairs, which all start with the largest root pair #o. We denote these 
as the chain cs (e = 1, 2,...) with the symbolical notation 

<g=~0 =- { # o > # ~ >  ... > ~,~} (n~> 1) 

where each pair ~7 (i= 1,..., n~) is nested in the pair ~ 1 (~'; =.~0). Let 
us emphasize that a given pair may belong to various chains, i.e., one may 
have N7 =N~ with ~ •7- In the corresponding potential VZN, it is then 
legitimate to retain only the dipole~zharge interaction potential between 
the dipole carried by ~ and the two opposite charges constituting the 
larger pair N~_ 1 in which it is nested (in addition to the self-energies of the 
pairs, of course). The dipole-charge interactions of ~ with the charges 
constituting the pairs which belong to the same chain but which are larger 
than ~7_ 1 are negligible compared to the analogous interactions of #7 1 
with these charges, because the dipole size of N7 is much smaller than that 
of ~ ~. The dipole-dipole interactions between pairs belonging to dif- 
ferent chains cg~0 and cg~0 are omitted sincethey do not give contributions 
which diverge sufficiently fast with respect to 1 / ( F - 4 ) .  Thus, in the expan- 
sion of the Boltzmann factor exp(-flV2u), the part which depends on N7 
and which contributes to C~ u reduces to the product of the screening 
operators 5P~ ~(~7) and 5~(r  if l<~i<n~, and to ~ (~o )  if 
i=  n~. Summing the contributions of all the chains, we then obt)fih " 

C~U(r)= - 2e 2 

~ e c~ xl-  [ [ ~o (~1) ' ' '@:~_(~) ]  (4.23) 

where ~> d~0  denotes a spatial integration over all the sizes, orientations, 
and locations of the neutral field pairs satisfying the set of geometrical 
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constraints I~ol > 1~71 > ..- > I~,iI, and the notation 1=[~ means that the 
screening operator 5%,(~) for a given pair ~ must be counted only once 
in the product I ] ~ ' " :  a given pair screens only one larger pair [if 
belongs to several chains, one may have the product of an arbitrary 
number of screening operators 5(~(~'), 5e~(~ ") ..... corresponding to the 
screening of ~ by smaller pairs ~ ' ,  N",...]. In (4.23), the factor 1/(N- 1)! 
arises from the product of the symmetry factor l / [ - ( N - 1 ) ! ]  2 attached to 
the diagram defining p + _,  by the number ( N -  1 )! of neutral pairs which can 
be formed among the 2 ( N - 1 )  labeled charges {x~,..., XN_I; y~ ..... YN-1} '  

Furthermore, the sum over the chains involves all the ways of building the 
chains cg~0 with the above neutral pairs. For  instance, at the order z 6, the 
chains, pairs, and screening operators are represented in Figs. 4a and 4b, 
and the sum over the chains reduces to 

plus twice 

/l~01 > I~',l dNl 5~e~162 I) fl~ll > I~l dN~ 5~I(N~) (4.25) 

[-the contribution (4.25) is multiplied by 2 because of the two ways of 
building the chain cg~0= {~0 > ~'] > ~2} with two given neutral pairs]. 

The inspection of the structure of (4.23) suggests a very natural way 
to derive a recurrence equation which links c~2U)(r) to C~2p)(r) with 

--i: 

c~_ 2 . . . .  ' 

(al (b) 

Fig. 4. The two kinds of chain configurations which contribute to C~(r) at the order z 6. The 
strips delimited by the dashed lines represent the neutral pairs. The straight line connecting 
the two opposite charges in a pair ~', together with the wavy lines connecting this pair to the 
larger one ~ in which it is nested, represent the screening operator 5~e(~'). 
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1 ~<p ~<N-1.  Let S(~ 2(N 1))(r) be the sum over the chains appearing in 
(4.23), 

c ~ 2 N ) ( r )  = --2e2 0 -4 ( N - -  1)! S~ 2(N- '))(r) (4.26) 

We can rewrite this quantity as 

N--1 ( N -  1)t 
S ~ 2 (  N -  1))(r) ,~, p! (~-z_ i -  p)!  

x I2ql(r)...I2qp(r ) 

x~ ( N -  1 - p)!  

q,>~o/--" ql! ""qp! 
qI + "" -k qp= N 1-- p 

(4.27) 

with 

I2q(r) = f d~ 5(~o(~ ) s~2q~(t) (4.28) 
I~ol > I~1 

and where t =  ] x - y f  is the size of the pair N =  {@ x, @ y}. In (4.27), p 
is the number of different pairs . ~  directly nested in ~o and (N--1)!/ 
[p! ( N - 1 - p ) ! ]  is the number of ways of choosing these p pairs among 
( N -  1 ). The quantity q~ is the number of pairs which belong to all the sub- 
chains starting with ~]', and ( N -  1 -P ) ! / (q l ! " "  qp!) is the number of ways 
of distributing N - 1 - p  pairs among p ensembles containing ql ..... qp 
pairs, respectively. The contribution of all the subchains starting with N~ 
reduces, by definition, to S,(2q')(tl),~ where tl~ is the size of the pair ~.~ Then 
the contribution Izq,(r) to S ~ 2 ( u - 1 ) ) ( r )  from the corresponding complete 
chains nested in ~o through ~ obviously takes the form (4.28). Each quan- 
tity I2q~(r) factorizes in (4.27) [in a similar way to (4.24), for instance] 
because there are no coupling terms in (4.23) between pairs belonging to 
chains {~o > ~ > " }  and {~o > ~ > ""} (with ? r c0, respectively. 
Equations (4.26)-(4.28) provide the basis of the required recurrence scheme 
for C ~2N)(r). 

Step 4. The Coupled Differential Equations for C,(r) and e(r). 
Using the definition of S(e 2(N- ~))(r) given by (4.26) in the z 2 series represen- 
tation of C~(r), we get 

Ce(r) = - 2 e  2 ~-~ 1 + N~__ l ~ .  S (e2N)(r) (4.29) 

where we have taken into account that S~~ 1. Replacing s~2N)(r) by 

822/66/1-2-13 
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the recurrent expression (4.27) (with N in place of N -  1) in each term of 
order z 2N in (4.29), we obtain 

z2 t,;/ { 
C ~ ( r )  = - 2 e  2 1 + ~ z 2N 

N ~ I  

p q,>~O ql"" "qp! J) 
ql+ "" + q p = N - - p  

= _ 2e~ ~ 

p =1 P! ~ ~ Izql(r) . . . .  Izqp(r) 
ql,..-,qp=O ~I[1" qp! 

{ z2q 
= - 2 e 2 a - 4  r exp z 2 _ q=O--~. I2q(r)~ (4.30) 

The second line in (4.30) follows from a first summation over N, whose 
result is both to extend the upper summation bounds relative to p, q~ ..... qp 
to infinity, and to suppress the constraint over ql + " + qp. Replacing 
I2q(r) by (4.28) in (4.30), and inverting the sum over q and the integral 
over N in order to make C~(t) appear, we finally get 

z 2 ( a ) r [  ( 7 4 e x p  [ ( t )  r ] C~(r) ~ 2 e  2 - d ~  ~ o ( ~ )  c~(t) 

(4.31) 

Using the expression (4.21) of 5e~o(~) and proceeding to an integration by 
parts in ~le~01 > L~l d ~  .... we can rewrite (4.31) as 

Z 2 (7 N r 

C~(r)=-2e:~-~(r ) exp[--Tr2fll"ln(r) f dtt3C~(') 

+ TrZflF f] dt t31n ( t ) cAt)] (4.32) 

The integral equation (4.32) for C~(r) incorporates in a systematic way 
the full resummation of the whole z 2 expansion of C~(r). In order to solve 
this equation, it is convenient to introduce the spatial-dependent dielectric 
constant e(r) defined by 

e(r) - 1 + r~2fl dt t3C~(t) (4.33) 
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This quantity comes out from (4.32) in a very natural way, and is 
identified as above because it reduces, apart from terms o ( z 2 / ( F - 4 ) ) ,  to 
the dielectric constant e in the limit r ~ oo. The latter is indeed related to 
C~ via 

1 1 + lz2fl dt t3C~(t) (4.34) 

which is the immediate extension of (4.16) to all orders in z 2 [the terms 
o(z2U/(F_ 4)2N- 1 ) for arbitrary N and which are left over in (4.34) are not, 
and will no longer be, explicitly specified, for the sake of notational 
convenience]. Differentiating both sides of (4.32) and (4.33) with respect 
to In(r/a), we easily find 

d 1 
- -  -- 7c2flr4C~(r) (4.35) 

d[ln(r/a)] e(r) 

d F 
C~(r) = - - -  C~(r) (4.36) 

d[ln(r/a)]  e(r) 

with the boundary conditions e (a)=  1 and C,(cr)=-2e2z2/a 4, which 
directly follow from (4.33) and (4.32) for r =  a. The integration of (4.36) 
leads to 

C~(r) = - 2 e  2 a-- 5 exp - dr' ~ _  (4.37) 

This integral equation and the definition of 1/~(r) are equivalent to the 
heuristic iterated mean-field theory devised by Kosterlitz and Thouless. (7) 
Thus, the coupled differential equations (4.35), (4.36) are equivalent to the 
flow equations. (15) Now we are able to express the required forms of l/e, 
C~(r), and CAS(r) in the present small-z and sma l l - (F -4 )  limit. 

4.2. Results 

The resolution of (4.35), (4.36) gives (15) 

l e = l +  1 ( F - 4 ) 2 J  

The full resummation of the z 2 expansion of 1/~ is incorporated in the 
function 

1 (F_4)2  j - 1 (4.39) 
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It is easily checked that the expansion of (4.39) in powers of z 2 allows us 
to retrieve the terms (4.3) and (4.15) of order z 2 and z 4, respectively, in 
the expansion of l/e, as it should be. The radius of convergence of the 
corresponding entire series in z 2 is given by the equation 

8rcz = F -  4 (4.40) 

which is nothing but the equation of the transition line between the 
dielectric and conductive phases, predicted by the renormalization group 
methods.(12,15) 

Integrating (4.36) from a to r, we find 

C~(r) =-2e2Z~--~(~)r/~A(r) (4.41) 

with 

1 1 1   r'- oOXp{ fr 
and where Ao is a constant independent of r, 

1 1 
A o = e x p { - F f ~ d t t [ ~ ) - ~ l  } (4.43) 

The integrals involved in the rhs of (4.42), (4.43) do converge in the dielec- 
tric phase, i.e., for 8 f e z < F - 4 ,  because then, according to (4.33) and 
(4.41), the quantity [1 / e ( t ) -  1/el goes to zero as 1/t r/`-4 when t--* oo with 
Fie strictly larger than 4. The amplitude coefficient Ao is a function of 
z/(F--4), whose explicit calculation requires us to solve the coupled 
differential equations (4.35), (4.36) for all the values of r. The leading term 
in the large-distance expansion of C(r) is readily obtained from (4.41), 

z2 
CAs(r)---- _2e 2 ~ Ao (4.44) 

This formula is the extension of the expression (4.17) to all orders in z 2. 
The structure of the subleading corrections to (4.44) can be obtained 

from the following recursive method. The leading term in the large-distance 
behavior of 

1 1 ~2fl f~ dt t3C~(t) (4.45) 
~('r) 
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is given by replacing C~(t) by CAs(t). Using (4.44) and (4.38), we then get 

[8~z/(r- 4) ]  2 A(r)=Ao{l-k-2{l_r8gz/(F_4)]2}l/2mo(~) FIe 4 

4)}  446, 
Replacing A(r) by (4.46) in (4.41), we find that the first subleading correc- 
tion to CAS(r) in the large-r expansion of C(r) takes the form 

with 

42z2 
(4.47) 

[8~z/(F- 4)] 2 A 2 
A I -  {1 -- [8gz/(F-4)]2} I/2 2 (4.48) 

This method can be extended to the calculation of all the subleading terms 
involved in C~(r), by starting from the integrodifferential equation 

d[ln(r/~)] - 3 2 ~  2 ~ A(r) dt t 3 A(t) (4.49) 

which follows from the differentiation of the definition (4.42) of A(r) and 
the combination of (4.41), (4.42), and (4.45). The final result is 

42z2{ (~)r/~ (~)r/~+N(r/~-4,} 
Ce(r)=--2-- -~-  A o + ~ A N (4.50) 

N~I 

which is the resummed form to all orders in z 2 of the expression (4.18). The 
amplitude coefficients A N (N>~ 1) can be recursively calculated in terms of 
A o and of the function [8rcz/(F-4)]2/{1--[8gz/(F--4)]2} m. Their z z 
expansions only start at the order z zx. All the terms in the rhs of (4.50) 
indeed contribute to l/e, in agreement with the definition of C~(r). At a 
given order z 2N, c2~N(r) is a linear combination of the quantities 

--2---~z2~N--''(F__4)Z,N.,~_,~r) Lln ~ ) J  (4.51) 

with 0 ~< m ~< N -  1 and 0 ~< n ~< N -  1, whose precise form can be found 
from the z 2 expansions of Au and 1/e in (4.50). Such quantities indeed give 
contributions to 1/e of order z2U/(F - 4 )  2 N -  1 by virtue of 

]~drr3(~)r+'~(r-4'[  ( r ) J "  n! 1 (4.52) 
- - ~  In = m . + l  ( F _ 4 ) . + 1  
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This linear combination is the extension of the expression (4.13) for C~4)(r) 
to higher orders. 

We stress again that the above results must be understood as the limit 
forms of the quantities of interest, in the dielectric region close to the criti- 
cal point (F = 4, z = 0), where both z and ( F -  4) are small parameters. For 
instance, the interpretation of (4.50) is the following: at small but finite 
values of z and (F--  4), the charge-charge correlation C(r) in the dielectric 
phase has a large-r expansion of the form 

e2Z2 oo (%)PN 
--2--~-~--N~==odN(Z,F--4) +~(r) (4.53) 

with P0 < Pl < "'" and where the remainder ~( r )  decays faster than (a/r) pN 
for any N in the whole considered region. In the limit where both z and 
( F -  4) go to zero, with the ratio 8rcz/(F- 4) kept fixed, the amplitudes dN 
behave as 

J~N(Z, I'-- 4) ~ AN(8rCZ/(['-- 4)) (4.54) 

and the powers PN collapse to 4 according to 

p N _ 4 ~ ( N + I ) ( F _ 4 ) , . ~ ( N + I ) ( F _ 4 ) I 1  _ \~-~J(8~z )2~1/2j (4.55) 

for all N and 8nz < F -  4. 

4,3. C o m m e n t s  

The systematic resummation of the low-fugacity expansions provides 
exact expressions for the limit forms of the quantities of interest in the 
dielectric region, near the zero-density critical point. These exact calcula- 
tions starting from first principles are in perfect agreement with the predic- 
tions of the renormalization group. For instance, we find that the dielectric 
constant does have a singularity on the transition line calculated with the 
RG methods. (12'~5) It turns out that this singularity coincides with the 
divergence of the low-fugacity series for 1/E. This situation is a bit unusual, 
since, in general, the divergences of such expansions arise from singularities 
in the complex plane which are not associated to physical phase transitions 
(as in the liquid-gas problem). Furthermore, our study confirms that, at 
least for small values of ( F - 4 ) ,  the effective coupling constant characteriz- 
ing the fixed point of the RG flow equations can be identified with F/e, as 
suggested in the literature. Indeed, such an identification exactly gives the 
resummed expression (4.38) of 1/e and the power Fie involved in the 
large-distance behavior (4.44) of C(r). 
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Our approach also provides a more rigorous foundation to the idea of 
the iterated mean-field approach originally introduced by Kosterlitz and 
Thouless. (7) This theory takes into account the polarization of the smaller 
pairs by a larger one: the interaction energy of a given pair is equal to the 
potential of a single pair in the vacuum multiplied by an effective coupling 
constant which depends on the size of the pair, as if the latter were immer- 
sed in a polarizable medium. In our approach, the screening of large pairs 
by smaller ones is described by the operator ~ ( ~ ) ,  and the equations of 
the iterated mean-field theory are recovered in a very natural way, without 
any a priori assumptions. In fact, our study shows that the effective pair 
correlation appearing in the latter theory can be indeed identified with the 
charge-charge correlations of the system. We stress that one of the crucial 
points which allow this identification is the cancellation of the 1/r 4 leading 
terms in the large-distance behaviors of the particle correlations r p++ and 

T p+ �9 
At finite values of z and ( F - 4 ) ,  i.e., at finite densities, the extension 

of the above results is rather questionable. Then the critical value of z (for 
a given F > 4 )  may still coincide with the radius of convergence of the 
low-fugacity expansion of l/t, but the asymptotic behavior of C(r) should 
no longer be proportional to (~/r) r/~. Indeed, the behavior (4.44) is the 
consequence of two circumstances, (i)1/e is entirely determined by the 
large-distance behavior of C(r), and (ii)a given pair is only screened by 
smaller pairs. 

At finite values of ( F - 4 ) ,  these circumstances are not met, since the 
contributions to 1/e from the finite distances in (2.8) as well as the 
screening by larger pairs cannot be neglected. In fact, the similarity of 
(4.44) to the corresponding behavior of the pair correlation between two 
infinitesimal external opposite charges is rather accidental and specific to 
the limit F ~ 4 +. Another argument supports the above considerations: for 
F sufficiently large and z small enough, the possible (air) r/~ terms decay 
faster than the 1/r 5 terms which arise in the multipolar expansions of p r + +  

and pr+_ and which do not cancel out in C(r). For such values of F, the 
KT transition should become a first-order transition between a dielectric 
gas and a conductive liquidJ 26) 

All our results obviously apply to any CG, i.e., with any kind of short- 
range potentials. The key quantity in the corresponding resummations is 
the integral 

f d t e x p [ - ~ v +  (t)] (4.56) t 2 

which is the equivalent of (3.13). In the limit F ~ 4 +, this integral diverges 
a s  

2~L4/(r- 4) (4.57) 
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In (4.57), L is the length which appears in the asymptotic logarithmic 
behavior of the potential: it also characterizes the scale where short-range 
interactions die out and Coulomb forces take over. Consequently the 
resummed expressions of 1/e and of C~(r) are merely obtained by changing 

into L. 
On principle the resummation techniques should also allow one to 

calculate the coefficient of the 1/r 4 terms in the large-distance behaviors of 
T T p++ and p+_  near the zero-density critical point. This amounts to 

calculating the limit form of the dimensionless coefficient ~2N(/') involved 
in (3.22) when F ~  4 +, for any N. We expect that, according to an analysis 
similar to that for C(r), ~2N(/') should be proportional to 1/(f ' -4)  2N-2, 
and the sizes in [ z / ( F - 4 ) ]  2 for r r p++ and p+ should have the same 
radius of convergence as l/e, or maybe a smaller one. Indeed, for 8rrz > 
F - 4  the system is in its conductive phase and the particle correlations are 
expected to decay exponentially, a behavior which is not compatible with 
the convergence of the low-fugacity expansions. Notice that the amplitude 
coefficients A N in the large-distance expansion (4.50) of C(r) do vanish on 
the transition line, i.e., for 8rcz = F - 4 :  this is in agreement with the 
appearance of the above exponential decay. 

5. A N A L Y S I S  OF T H E  BGY H I E R A R C H Y  

In this section, we study the large-distance behavior of the particle 
correlations starting from the BGY hierarchy equations. For this purpose, 
we consider a symmetric version of the CG, with potentials 

v++(r )=v_  ( r ) = - v + _ ( r ) = e 2 v ( r )  (5.1) 

where v(r) is differentiable everywhere. For instance, one may choose 

v(r) = ~(--In(r/a), r > a 
~ 1 [ 1  - ( r / o - ) 2 ] ,  r < o- 

(5.2) 

which corresponds to a parabolic regularization at the origin of the 
Coulomb potential (2.3) (this potential is the same as that created by a 
uniformly charged disk). In Section 5.1, we derive a new exact expression 
of 1/~ in terms of the dipole of the charge cloud surrounding two opposite 
fixed charges of the medium. This identity, valid in both conductive and 
dielectric phases, is obtained through manipulations of the BGY equations 
for T T p + + and p + _ ,  which are inspired by those by Martin and Gruber. (18) 
In Section 5.2 this identity is used to show that some particle correlations 
cannot decay faster than 1/r 2 in the dielectric phase. In Section 5.3 we show 
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that the decay scenario for the particle correlations suggested by the 
analysis of the low-fugacity expansions is compatible with the large-dis- 
tance structure of the BGY equations. Throughout all this section, we shall 
assume that the BGY equations are satisfied in the homogeneous infinite 
system. 8 

5.1.  T h e  D i e l e c t r i c  C o n s t a n t  in T e r m s  o f  a D i p o l e  

Our starting point is the linear-response expression (2.8) which relates 
1/e to the second moment of the charge correlation C(r). The required 
identity for 1/e is obtained by calculating this second moment in terms of 
the dipoles of three-body correlations, through manipulations of the BGY 
equation for C(r). First, we derive the latter from the BGY equations for 

T T p + + and p + .  Then, we formulate a set of clustering assumptions which 
ensure the convergence of the integrals appearing in the BGY hierarchy as 
well as the validity of the above manipulations. The new expression 
obtained for 1/e is finally checked in the zero-density limit. 

The BGY equations for the two-body densities p r+ + and pr+_ read 

r (rl ,r2) f le2F(r2_rl)  r V 2 p + +  = p++(r l ,  r2) 

+/~e 2 f dr3 F(r2 - r3)[p~_ + +(rl, r2, r3) 

_pr+ + - ( r l ,  r2, r3)3 (5.3a) 

V2pr+_(rl, r z ) = - / ~ e Z F ( r 2 - r l ) p r +  (rl ,r2) 

+ f l e 2 f d r 3 F ( r 2 - r 3 ) [ p ~  (rl, r2, r3) 

T +(rl ' r2 ' r3)] (5.3b) - - p + _  

where F(r) is the force deriving from the potential v(r), i.e., 

F(r) = -Vv(r) (5.4) 

It is useful to rewrite (5.3a), (5.3b) in terms of the fully truncated densities, 
i.e., the particle correlations. For this purpose, we use the well-known 
relations 

2 T r Ps,s2(r,, rz) P +Ps, s2( 1, re) (5.5) 

Pst~2s3(rl ' r2 ' r3 ) 3 r T = P + PPs,,2(rl, r2) + ppTs3(rl, r3) + pps:s3(r2, r3) 
T + psls2s3(rl, r2, r3) (5.6) 

8 The validity of the BGY equations for the correlations of the infinite system has been 
proved, at sufficiently high temperature, by Fontaine and Martin. (27) 
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and we introduce the total charge density Qs~ . . . . .  (rl .-- rn It) induced at r in 
the medium by n charges sie fixed at ri (i = 1,..., n), i.e., 

e[Psl ..... +(rl ..... r , ,  r ) - P s i  ..... (rl ..... rn, r)] 
Qs~ ..... (rl . - - r n [ r ) -  

p,~ ..... (rl,..., r .)  
n 

+ ~ sieS(r-ri) (5.7) 
i - - 1  

From these definitions, we easily find 

V2pr+ +(rl ,  r2)=  fie2F(r2 - r l )  pr+ +(rl ,  r2) 

+flep 2 f dr3 F ( r 2 - r 3 )  Q+(r l l r3)  

+fie 2 f dr3 F(r 2 - r  3)[pr+++(rl , r2 ' r3) 

_ p r  _ ( r l , r2 , r3 ) ]  (5.8a) + +  

V2p~ ( r l , r z ) = - f i e Z F ( r 2 - r l ) p r + _ ( r l , r 2 )  

-f iep 2 f dr3 F ( r z - r 3 )  Q+(r l l r3)  

+fie 2 f dr3 F ( r 2 - r 3 ) [ p r + _ _ ( r l , r 2 ,  r3) 

-0r+ +(r,, r2, r3)] (5.8b) 

For the present symmetric CG, 

C(ri2)=2e2[pr++(r1, r 2 ) - p  r (rt, r2)] +2e2p6( r1 - r2 )  (5.9) 

Then the BGY equation for the charge correlation directly follows from the 
subtraction of (5.8b) to (5.8a), i.e., 

Vz[C(r12) - 2e2p6(r1 - r2)] 

= 2fle2p f dr3 F ( r 2 - r 3 )  C(r13)+ 2fie 4 f dr~ F(r2 ~ r 3 ~ 

T x [pr+++(r l , rz ,  r 3 ) - p r + + _ ( r l , r 2 ,  r 3 ) + p + + ( r l , r 2 ) 6 ( r 3 - r l )  

+ p~__ +(rl,  r2, r3) - r r p+__( r~ ,  r2, r 3 ) + p + _ ( r l ,  r2) 6 ( r ~ - r l ) ]  
(5.1o) 
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In deriving (5.10), we have also used 

C ( r l 3  ) = 2epQ + (r I I r3) (5.11) 

which is an obvious consequence of (5.7) with (n = 1, sl = +)  and (5.9). 
In order to ensure the convergence of the integrals in the rhs of (5.8a), 

(5.8b), and (5.10), the two- and three-particle correlations must have a 
minimal decay when one particle is sent to infinity. It is easy to check that 
a 1/r ~+a decay (6 > 0) makes the above integrals absolutely convergent. In 
the following, we shall assume stronger clustering properties, namely 

cst 
I ( r  r r2)l < (5.12a) 

El2 

cst 
C ( r 1 2 ) <  4+a (5.12b) 

r12 

r r N3(Inf(rik, rkj)) (5.12c) IPSIS2S3 ( 1 ,  r2, r3)l < r3.+a 
*j 

r r Ng(Inf(rik, rkj), Inf(r,t, r0)) (5.12d) IPSIS2S3S4( 1' r2, r3, r4)t < r!+a 
/j 

where N3(r ) and N4(r, s) are bounded functions of r and s such that 
r2+aN3(r), r 1 +aNa(r, s), and s I +aNa(r, s) are also bounded. The clustering 
assumptions (5.12) should be always satisfied. Indeed, an exponential decay 
of the correlations is expected in the conductive phase, while the algebraic 
decays in the dielectric phase suggested by the low-fugacity expansions are 
compatible with the bounds (5.12). Note that the latter imply the perfect 
screening sum rules (see, e.g., ref. 28) 

f dr C(r) = 0 (5.13a) 

f dr Qsls2(rl, rzlr) = 0 (5.13b) 

which are indeed expected to hold in both phases. 
In order to calculate the second moment of C(r), we use a method 

first introduced by Martin and Grubcr. (18) Let us multiply each side of 
Eq. (5.10) by ( r l -  r2) and integrate the resulting equality over r 1. If we 
take into account the translation invariance of the homogeneous infinite 
system which allows us to change V2 into -V1 in the lhs of (5.10), we then 
obtain 
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t" 
- J  dr1 (rl - r2)" V1 [C(r12) - 2e2pf(rl - re)] 

= 2]~e2p f dr  I (r 1 -- r2)" f dr 3 F(r  2 --r3) C(rl3) 

+ 2fie 4 f drl  (r I - - r2) .  f dr3 F ( r 2 -  r3) 

X {py+++(rl ,r2,  rg)_t_pT+_+(rl,ra, r3)_p++r  _(r l , r2 ,  r3) 

__pr (rl, r2, r3) + [pr+ +(rl ,  r2) + pr+_(rl r2)] a ( r l _ r3 )}  

(5.14) 

The left-hand side of (5.14) is easily calculated via an integration by parts, 

- f  dr l  (rl - rz)" V1 [C(r12) - 2e2pf(r12) ] 

= f dr1 [C(r12) - 2eZp(~(rx2)] V 1 �9 (rl -- r2) 

= 2 f dr1 C(rl2 ) -- 4e2 p 

= -4eZp (5.15) 

where the last line follows from the perfect screening sum rule (5.13a). Note 
that the contribution from the surface terms in the integration by parts 
vanishes by virtue of (5.12b). For calculating the first term of the right- 
hand side of (5.14), we split the force F into a short-range part F sR and the 
long-range Coulomb part Fc  = -Vvc:  

f dr1 ( r l - r 2 ) "  f dr3 F(r2-r3)C(F13)  2~e2p 

= 2~e2p f dr1 ( r l -  r2)" f dr3 FSR(r2-r3) C(r13) 

"~- 2]~e2p f dr l  (rl - r2)" f dr3 Fc(r2 - [3) C(F13) (5.16) 

In the first integral of the rhs of (5.16), we can invert the integrals over r 1 
a n d  r3, because the decay of ( r l - r 2 ) "  FSR(r~--r3) C(rl3)  at infinity for any 
configuration (r~, r3) is sufficiently fast to ensure absolute convergence. We 
then obtain 
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2fle2p f drl ( r l -  r2). f dr3 FSR(r2--r3)C(rl3 ) 

= 2fle2p f dr3 FSR(r2--r3) ~ f dr1 (r 1 - - r2)C(r l3  ) 

= 2fleep f dr3 FSR(r2 --r3) 

=0  (5.17) 

since the net charge ~ dr~ C(rl3 ) identically vanishes by virtue of the perfect 
screening rule (5.13a), while the dipole S dr~ ( r l -  r 3) C(r13) also vanishes 
because of the rotational invariance of the homogeneous infinite system. In 
the second integral of (5.16), we write (r 1 - r 2 )  =Vl(r122/2) and we perform 
an integration by parts. The surface term does not give any contribution 
because the bound (5.12b) implies that Sdr3Fc(r2-r3)C(r13) decays 
faster than 1/r~f 6, and consequently Ir~2 ~ dr 3 Fc(r2-r3)C(r13)[ goes to 
zero when q2 -+ 00. Using also 

V~ f dr 3 Vc(r 2 - r3 )  C(r 13)= --g2 f dr3 Vc(r2-  r3) C(r,3) 

= - f d r  3 C(r13) Vz" Fc( r2- r3)  (5.18) 

which follows from the translation invariance of the homogeneous infinite 
system, and 

we finally find 

V2" Fc(r2 - r3) = 2rt6(r2 - r3) (5.19) 

2fleZp f dra (rl-r2)" f dr3 Fc(r2-r3) C(q3) 

= 21tBe2p f dr r2C(r) (5.20) 

In the last integral of the rhs of (5.14), we can first perform the integration 
over r 1, because the full truncation of the distribution densities inside the 
brackets [. .-]  together with the bounds (5.12a), (5.12c) and the 1/r decay 
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of F ensure absolute convergence. This leads to the sum of the following 
integrals: 

I d r l  ( r l - r 2 ) [ p  T +++ (r,, r2, r 3 ) - p  r__ ++ (rl, r2, r3)+pr+ +(r, , r2) 6 ( r , - r 3 ) ]  

(5.21a) 

f dr1 (rl-r2)l-pr+ +(rl, r2, r3)--p ~ _ +(r,,  r2, r3)+pr+ (rl, r2) a ( r l - r 3 ) ]  

(5.21b) 

where we have used the symmetry relations p r+ =p~_++ and 
p++r =pr__+ .  According to the definitions (5.5) (5.7), Q++(rz,  r31rl) 
and Q_ + (r> r3lrl)  can be rewritten as 

e 
Q++(r2, r 3 ] r , ) -  

p++(r2,  

+ ppy++ 

--pp~+ 

+ e[a(rx 

r3 ) [p~ + +(r,,  r2, r 3 ) - p T  + +(r,,  r2, r3) 

(rl, r2) + pp~+ +(r,, r3) 

(rl, r2) -  pp~ +(rl, r3)] 

- r3) + 6(r~ - r2)] (5.22a) 

e 
Q_ +(r2, r3lrl)  - 

P +(r2, 
+ ppr+ 

_ ppT_ 

+ e[6(rl  

[pr+ +(rl , r2,  r 3 ) - - P r - + ( r l , r 2 ,  r3) 
r3) 

(rl, r2)+ pp v+ + (rl, r3) 

(rl, r 2 ) - - p p r + ( r l  ' r3)] 

-- r3) -- 6(rl -- r2)] (5.22b) 

Let p++(r2, r3) and p +(r2, r3) be the dipoles carried by the charge 
distributions Q + + (r2, r31rl) and Q _ + (r2, r3lrl), namely 

P+ +(r2, r 3 ) = f  drl r lQ+ +(r2, r3 Irl) (5.23a) 

p +(r2, r 3 ) = f  dr1 r lQ_+(r2 ,  r31rl) (5.23b) 

it is easily checked, by using (5.22), that the integrals (5.21a) and (5.21b), 
respectively, reduce to 

1 
- p .  +(r2, r3) p+ +(r2, r3) (5.24) 
e 
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and 

1 
- p _ + ( r 2 ,  r3)  p + ( r 2 ,  r3)  (5.25) 
e 

[in this identification the perfect screening rules (5.13) are also taken into 
account as well as the rotational invariance of the homogeneous infinite 
system]. Thus, the last integral of the rhs of (5.14) becomes 

2re 4 f dr I (r  1 _ r 2 ) "  f d r  3 F ( r 2 _  r3)[-pr+ + + ( r l ,  r2 ' r3 ) _~_ fiT+ + ( r l ,  1.2, r3 ) 

_ p r + + _ ( r l  ' r2 ' r3 ) _ p r ~ + _ _ ( r l ,  r2 ' r3 ) 

+ pr+ +(r, ,  r2) 6(r, -- r3) + pr+ _(r l ,  r2) 6(r, - r , ) ]  

= 2re 2 f dr F(r)" [p + + (r) p + + (r) + p_  + (r) p + (r)] (5.26) 

with r = r2 - r3 and p + + (r) = p + + (r 2, r 3 ), p _ + ( r )  ---= p _ + (r2,  r 3). Replacing 
the various terms of Eq. (5.14) by their expressions (5.15), (5.17), (5.20), 
and (5.26), we find 

f dr r2C(r) T 
fie g 

= - 1 - ~ p p  J d r  F(r ) -  Ep++(r) P+ +(r) + p_ +(r) p_ +(r)]  

(5.27) 

If we insert this expression for the second moment of C(r) in (2.8), we 
finally obtain the required expression for l/e, 

1--fefdrF(r)'[p++(r)p++(r)+p +(r) p +(r)] 
e 2p 

(5.28) 

The integral in (5.28) does converge since p+ +(r) and p_ +(r) decay faster 
than 1/r I +a as a consequence of (5.12c). 

We stress that the identity (5.28) is valid in both conductive and 
dielectric phases. In the conductive phase, the dipoles p++(r )  and p +(r) 
identically vanish as a consequence of the multipole sum rules. (28'29) Then, 
the rhs of (5.28) also vanishes, and we recover that e is infinite. In the 
dielectric phase, p+ + (r) still vanishes for symmetry reasons. However, since 
1/e is finite, there exists a nonzero measure ensemble of values of r, such 
that p_+( r )  is different from zero. This result is well supported by the 
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physical picture which describes the dielectric phase as a system of neutral 
dipolar molecules. 

The identity (5.28) can be checked in the dielectric phase at the lowest 
orders in z 2 by replacing the quantities of interest by their low-fugacity 
expansions in (5.28) and (2.8), respectively. For instance, one finds at the 
zeroth order from (2.8) 

( ! ) (~ 1 (5.29a) 

On the other hand, the identity (5.28) gives 

f dr p~2)+(r) F(r)" p~+ (r) 

~e 
f dr z 2 exp[fle2v(r)] [ - V v ( r ) ] "  ( - e r )  

= 2z z ~ dr exp[fle2v(r)] 

1 r dr r.  V exp[fle2v(r ) ] 
2 S dr exp[fle2v-(r)] J 

= 1 (5.29b) 

which does coincide with (5.29a), as it should be. Checking the identity at 
the order z 2 is more cumbersome and involves the manipulations of 
non-absolutely convergent integrals (see Appendix B). 

5.2. Existence of  D i p o l e - D i p o l e  Corre la t ions  

As mentioned in Section 2, the violation of the Stillinger-Lovett sum 
rule implies that some correlations have an algebraic decay in the dielectric 
phase. Here, starting from the existence of the nonvanishing dipole p_ +, 
we give strong arguments which suggest that p v+_  + should decay as 1/r 2 
(similarly to the dipole~tipole potential) when two neutral pairs are 
separated by a large distance r. This nonperturbative result corroborates 
the findings relative to the term-by-term analysis of the low-fugacity expan- 
sions of the particle correlations (see Section 3). The coefficient of the 
above 1/r 2 behaviour is related to p + and I/e via integral expressions, 
which can be viewed as sum rules. The whole study is carried out through 
the inspection of the asymptotic structure of the BGY equations for the 
three-particle correlations. We give the detailed inspection only for p r+  +. 

The BGY equation for p r++( r l , r2 ,  r3) directly follows from the 
corresponding equation for the three-body density p_++(r l , r2 ,  r3). 
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Expressing also the four-body densities in terms of the particle correlations 
and using (5.7), (5.8), one finds 

V3jO T + + ( r l ,  r2 ' r3  ) 

=/?e2 [F ( r3 -  r 2 ) -  F ( r 3 -  r l ) ]  pr_ + +(rl, r 2, r3) (5.30a) 

+flepr+(rl,r3) f dr4F(r3-rg)pQ+(rzlr4) (5.30b) 

+~epr++(re, r3)fdr4F(ra-r4)pQ (rl ]r4) (5.30c) 

+ flep f dr 4 F(r 3 -- ra) [p_ + (rl, r2) Q + (rl, r 2 I r4) 

_ p2Q _ (rl IF4) - -  p2Q + (r 2 I r4)] (5.30d) 

+/?e 2 f dr4 F(r3 - r4) 

x[pT+++(rl, r2, r3,r4)--pr_++ (rl, r2, r3, r4) ] (5.30e) 

Let us study the asymptotic behavior of the three-body mean-field term 
(5.30d) when r3 is sent to infinity, rl and r2 being kept fixed. For this, we 
first split F into a short-range part F sR and the long-range Coulomb part 
Fc.  The term (5.30d) can then be rewritten as 

flep f dr 4 FSR(r3 --r4)[p_ +(rl, r2) Q +(rl, r 2 ]r4) 

_p2Q ( r l l r 4 )_  p2Q+(r2]r4)] (5.31a) 

+ flep f dr 4 Fc(r  3 - r4)[p _ + ( r l ,  r 2 )  Q_ + (rl, r 2 t  r 4 )  

_ p2Q_ (r I l r4) _ p2Q + (r2 It4)] (5.31b) 

Since F sR has a compact support, (5.31a) decays as 

[ p _ + ( r l , r 2 )  Q _ + ( r l , r 2 ] r 3 ) - p 2 Q  ( r l J r3 ) -p2Q+( rz [ r3 ) ]  

i.e., faster than 1/r~ by virtue of the bounds (5.12a), (5.12c). The quantity 
(5.31b) is proportional to the Coulomb field at r3 created by the localized 
charge distribution 

p_+(rl, r2) Q_+(rl,r2[r4)-p2Q (rl [ r4 ) -p2Q+(r2  Ir4) (5.32) 

822/66/'1-2-14 
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Therefore its asymptotic expansion for r 3 large is given by the familiar 
multipolar expansion with respect to the successive multipoles of (5.32), 
plus a remainder E~+( r l ,  rzlr3) which obeys the Poisson equation 

V3" E~R~+ (rl, rz I r3) (5.33) 

= 27rf lep[p_ + (rl, r2) Q_ + (rl, r2 I r3) - p 2 Q _ ( r l  I r3) - pZQ + (r 2 i r3) ] 

The bounds (5.12a), (5.12c) imply that ECR)+(rl, r2 t r3) decays faster than 
l ira.  In the multipole expansion, the monopole l /r3 term vanishes because 
of the perfect screening sum rules (5.13). However, the dipole 1/r 2 term 
does not vanish in general, because the dipole of the charge distribution 
(5.32) reduces to p _ + ( r l , r z ) p _ + ( r l ,  r2). Consequently, we find that 
(5.30d) behaves as (r3 -= r3/r3) 

[ p _  + (r~, r2) - 2r3" p _  + (r l ,  r2) f33 
- ~ e p p _  +(r 1, r2) r~ (5.34) 

when r 3 ~ oo with (rl, r2) fixed. 
The leading 1/r 2 term (5.34) of the asymptotic expansion of (5.30d) 

must be compensated by another 1/r 2 contribution arising either from the 
lhs of (5.30) or from the quantities (5.30a)-(5.30d). Taking into account the 
bounds (5.12a), (5.12c), we immediately see 9 that the lhs of (5.30) as well 
as (5.30a) decay faster than 1/r 4. The asymptotic behavior of the two-body 
mean-field terms (5.30b), (5.30c) can be studied like that of (5.30d). Since 
Q+(r2lr4) and Q_(r21r4) do not carry any monopole or dipole, these 
terms decay faster than 1/r~. Thus, the sole 1/r~ contribution which can 
cancel (5.34) arises from the four-body term (5.30e), i.e., 

e f  dr4F(r3-r4)[P~+++(rl,r2, r2, r4) -P r_++ ( r l , r 2 ,  r3 ,  r 4 ) ]  

p_+( r l ,  r 2 ) - - 2 [ f 3 " p _ + ( r l ,  r2)] r3 
-- p p _  + (rl, r2) 2 (5.35) 

F 3 

w h e n  r 3 --~ ~ ,  ( r l ,  r2 )  being kept f ixed .  

The above analysis can be repeated for the BGY equations relative 
to pT+ (rl, r2, r3), pY+++(rl, r2, r3) and T (rx, r3). Similarly to P + + r2 ,  
(5.35), we find 

e f dr 4 F(r3 - ra)[p~ + _ +(rl,  r2, r3, r 4 ) -  p~ +__( r l ,  r2, r3, r4)] 

- - p p  +(rl,  r2) p +(r~, r2) - -2[F3"p_+(rx ,  r2)] r3 2 (5.36) 
r 3 

9 For  this, we implicitly assume that the large-distance expansions of the particle correlations 
do not  involve oscillating terms like (cos rU)/r ~ with v - # ~< 3. 
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whereas, since p+ + (rl, re) = 0, 

e f dr4 F(r3-r4)[P ~+ + + + (rl, r2, r3, r4 ) -  P r+ + +_ (rl, r2, r3, r4) ] =o(1/r 2) 

(5.37) 
and 

e f draF(r3_r~)[pr++_+(rl,r2,  r3, r4 )_p  ++r _ (rx,r2, r3, r4)]=o(1/r3) 

(5.38) 

From the asymptotic behaviors (5.35), (5.36), it is very natural to 
guess that there exist four-particle correlations which only decay as 1/r 2 for 
some specific configurations of r I , r2, r3, r4. In fact, we conjecture that such 
correlations and configurations correspond to two far away neuU'al pairs, 
i.e., one should have (fi-= R/R) 

O_+.  +(rl - r2, r3--r4; fi) 
pr_+ +(rl, r2, r3, r4)~ R2 (5.39) 

when R = (r 3 + r 4 - r  I - r2 ) /2  is sent to infinity, (r I - r 2 )  and (r 3 - r 4 )  being 
kept fixed. All the other four-particle correlations or configurations should 
lead to decays faster than 1/r 2. This conjecture is compatible with the exact 
behaviors (5.35)-(5.38) and with the term-by-term analysis of the low- 
fugacity expansions. Therefore we believe that (5.39) is the true behavior in 
the whole dielectric phase, although this form cannot be derived in a 
rigorous deductive way from the exact results (5.35)-(5.38). 

The function D_  +,_ +, coefficient of the 1/R 2 term in (5.39), obviously 
satisfies the symmetry relations 

D + . _ + ( t ' , t " ; l ~ ) = D  + _ + ( t " , t ' ; - R )  (5.40a) 

D + , _ + ( - t ' ,  - t " ; ~ ) = D _ + _ + ( t ' ,  t " ;R)  (5.40b) 

D +. +(t', - t " ;  R ) =  - D  + _ + ( t ' , t " ; R )  (5.40c) 

where e t ' = e ( r 2 - r l )  and e t " = e ( r a - r 3 )  are the dipoles carried by the 
pairs ~ ' =  {@ r2, @ rl} and N " =  {@ r4, @ r3}. Furthermore, we easily 
obtain from (5.36) 

f = c t' +(t ' ))R] e d t " F ( t " ) D _ + ,  +( t ' , t " ; f i )  - p p _ + (  ) [ p _ + (  ) - 2 ( f i ' p _  

(5.41) 

Multiplying each side of (5.41) by F(t ')  and integrating over t', we get 

f dt' dt" F(t") t"; R ) = 0  F(t'). D +, (5.42) 
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which follows from the colinearity of F(t ')  with p_+(t ' ) .  On the other 
hand, a first projection of (5.41) over R, followed by the multiplication of 
the resulting equality by R .  F(t ' )  and an integration over t', leads to 

f p2 
dt '  dt" [P,. F( t ' ) ]  [-P,. F(t")]  D_  +, + (t', t"; 0,) = j~e2 e (5.43) 

In deriving (5.43), we have also used the relation (5.28). The identities 
(5.41)-(5.43) are expected to be valid at any finite density in the dielectric 
phase. In Appendix C, we check that the identity (5.41) is indeed satisfied 
at the order z 6 included for D §  [-the identities (5.42) and (5.43), 
which are immediate consequences of (5.41), are then also satisfied]. 

The above 1/R 2 decays can be interpreted as resulting from dipole- 
dipole interactions. However, we stress that the precise form of (5.39) 
cannot be rewritten as the dipole dipole potential between the two pairs N' 
and ~ "  renormalized by the multiplicative factor l/e, even near the zero- 
density critical point [see the expression (C.8) for D(6/+ _+] .  Thus, the 
intrinsic correlations between two far away dipoles of the medium do not 
behave as the effective correlations between infinitesimal external dipoles 
immersed in the medium. This confirms that the 1/r r/~ decay of C(r) is very 
peculiar to this quantity and to the limit F--* 4 +. 

5.3. A Plausible Decay Scenario 

In the previous subsection we gave strong arguments indicating that 
p r_ + + decays algebraically as 1/r 2 when two neutral pairs are separated 
by a large distance r. In fact, all the particle correlations should decay as 
power laws in the dielectric phase, as suggested by the analysis of the 
low-fugacity expansions. Here, we present an algebraic decay scenario for 
the two- and three-particle correlations inspired from this analysis. This 
scenario is shown to be consistent with the asymptotic structure of the 
BGY equations (5.8). Furthermore, we discuss the hypotheses of the condi- 
tional theorem of Alastuey and Martin, (3~ which are violated in the 
present scenario. 

The two-particle correlations should decay as the square of the dipole- 
dipole potential (see Section 3), i.e., 

r B +. + (5.44a) 
p++( r l ,  r2)~ r42 

B +, (5.44b) p~_(r,, r2 )  4 
r12 
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when ?'12 ~ 00, where the constant coefficients B+,+ and B + _  are identi- 
cal. Consequently, the charge correlation C(r12) decays faster than 1/r42, 
i.e., 

Co 
C(rl2 ) ~ ~-~, r12 --* oO (5.45) 

where Co is a constant coefficient and the power Po is strictly larger than 
4. When one particle is sent to infinity, the three-particle correlations 
should decay like 1/r 4. Typically, 

7- +(rl r2, r3) B++ +( r l - r3 ;~2)  
P + +  ~ r4 (5.46) 

when r2---~ 00, with r~, r3, 2 2 kept fixed, and the other three-particle 
correlations have similar behaviors. When the three relative distances r12 , 
r13, r23 become large, these three-particle correlations should decay as the 
product 1/(r~2r132 2 r23) of the dipole-dipole potentials. For instance, 

pr+++(rl,r2, r3),. D +,+,+(01,02, 03) 
2 2 2 (5.47) 

F12F13g23 

when r12, r13, r23 ~ o0, the angles 01, 02, 03 of the triangle (rl, r2, !"3) being 
kept fixed. Finally, there exist uniform bounds of the kind 

M(r) (5.48) 
Ip + + +(1.,, r2, r )l < r4---7 

with r = Inf(r13, r32 ) and M(r) a bounded function which goes to zero as 
r ~  m. Note that the behaviors (5.46), (5.47) are compatible with the 
bound (5.48). 

The large-distance behaviors of the various terms of the BGY equation 
(5.8a) for p r  + +(rl ' r2) are now determined from the above decay scenario. 
Assuming that the corrections to the leading term (5.44a) in the asymptotic 
expansion of p r + are monotonic, we see that the lhs of (5.8a) behaves as 

V2p~+(0, r2)~  4B+,+ r~ r2 (5.49) 

when r2--*oo with r l = 0  fixed. In the rhs of (5.8a), the behavior of the 
selgtermis obvious, 

fle2B +, 
fleZF(r:) pT+ +(0, r2)~ r2 s + f2, r2-"l'GO (5.50) 
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The mean-field term proportional to the electric field created at r 2 by the 
charge distribution Q+(0[r3) can be computed from Newton's theorem, 
since Q+(0[r3) is invariant under rotations. This gives 

flep 2 f dr3 F ( r 2 -  r3) Q+(0lr3) 
n ~ p C o  

( P o -  2) r~ ~ f2, r 2 ~ oo (5.51) 

where we have taken into account the relation (5.11), the perfect screening 
rule (5.13a), and the decay (5.45). The determination of the precise 
behavior of the three-body term would require additional assumptions on 
the decay of p r and p T which cannot be easily guessed from the + + +  + + - - '  

term-by-term analysis. However, Lemma L1 in ref. 30, whose hypotheses 
are satisfied by the uniform bound (5.48), can be applied here, with the 
result 

fle2 f dr3F(r2-r3)[pr+ ++(O, rz, r3) -pr+ + (0, r2, r3)] 

= o (1 / r~ ) ,  r2 ~ 00 (5.52) 

The large-distance behaviors (5.49)-(5.52) are consistent with the BGY 
equation (5.8a). Indeed, the multipolar 1/r~ behaviors (5.49), (5.50) should 
be compensated by the contributions to the three-body term of the regions 
r 3 close to 0 and r 3 close to r2, respectively. On the other hand, the 1/r p~ 
behavior (5.51) should be compensated by contributions to the three-body 
term arising from the intermediate region between 0 and r2 [this cancella- 
tion is compatible with the decay (5.52), since P 0 - 1  is strictly larger 
than 3]. 

The algebraic decay scenario corresponding to Eqs. (5.44)-(5.48) must 
violate at least one of the hypotheses of a conditional theorem which 
precisely excludes monotonic power-law behaviors in a multicomponent 
Coulomb fluid. ~176 This theorem specifies that if there exists some real 
power v > 2 such that 

( i )  ~ v psls2(rl, r2) ~ A~ls2/r2, r e --* oo 
(ii) r r -+ Psls2s3( t, re, rs) < M(r)/r~, r2 oo 

(iii) sls2Asls2 <O 

then the constants A~ls2 necessarily vanish whatever v is. The clustering 
assumptions (i) and (ii) with v = 4  are satisfied by the above decay 
scenario. However, the assumption (iii), which stipulates that r p++ and 
p+_r have opposite signs at large distances, is not fulfilled here, since pr+ + 
and pr+ become in fact identical when r2--+oo ( B + . + = B + , _ ) .  This 
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assumption is crucial for the derivation of the conditional theorem, because 
it implies that the charge correlation decays like the particle correlations: 
the mean-field term in the BGY equation for p~,2(0, r2) then behaves as 
1/r~-  ~ when r 2 ~ oe and cannot be compensated by any other term. In the 
present scenario, the charge correlation decays faster than the particle ones, 
and this allows cancellations between the mean-field and three-body terms. 
Physically, the hypothesis (iii) amounts to assuming that the sign of 
the particle correlations is determined by the electrostatic attraction or 
repulsion between the considered charges. This should be true at high 
temperatures, but no longer holds in the dielectric phase, where the forma- 
tion of neutral molecules is the crucial phenomenon. 

The above algebraic decay scenario can be extended to the four- and 
higher-order particle correlations. When one particle is sent to infinity, 
these correlations always decay as 1/r 4. When two groups of two or more 
particles are separated by a large distance r, the corresponding correlations 
decay as 1/r 2 if each group carries a dipole, as 1/r 3 if one of these dipoles 
vanishes, or as 1/r 4 if both vanish. The slower decay of the particle correla- 
tions for these specific configurations is essential for ensuring the con- 
sistency of the whole algebraic scenario with the full BGY hierarchy. 

V r In particular, in the BGY equation relative to , ,p~ ..... (r~ ..... r,), the 
multipolar field created at rn by the charge distribution 
Q~L ...... l(r~ ..... rn_ l l r ,+~)  is compensated by the contribution to the 
integral term, 

f T T drn+l F(rn - rn+ 1)[pst ..... +(r,,..., r ,+ 1 ) -  ps, ..... _(r ~,..., r,, + 1)3 

of the region rn + 1 close to rn (this cancellation is studied in detail for n = 3 
in the preceding subsection). 

6. C O N C L U S I O N  

Resumming the usual low-fugacity expansions near the zero-density 
critical point, we have calculated the large-distance expansion of the charge 
correlations in the dielectric phase as a sum of inverse power laws. Our 
first-principles approach allows us to retrieve some predictions of the RG. 
In particular, the exponent of the leading term in the above expansion is 
found to be the coupling constant F renormalized by the dielectric constant 
e, in agreement with the conjectured value of the effective coupling constant 
at the fixed point of the RG flow equations (the latter has to be identified 
with the above critical exponent). Moreover, we give a precise mathemati- 
cal foundation to the physical idea of screening of a large pair by smaller 
pairs introduced by Kosterlitz and Thouless in the heuristic iterated mean- 
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field theory. We also have studied the large-distance behavior of the par- 
ticle correlations in the dielectric phase at finite densities. A term-by-term 
analysis of the low-fugacity expansions combined with a survey of the BGY 
hierarchy equations provides a plausible algebraic decay scenario very 
similar 1~ to what happens in a system of permanent dipoles. We stress that 
the four- and higher-order particle correlations may decay slower than the 
two-particle ones for some specific configurations, typically as slow as the 
1/r 2 dipole-dipole interaction potential. This slower decay of the higher- 
order particle correlations is essential for ensuring the consistency of the 
algebraic scenario with the BGY hierarchy. 

Our analysis of the particle and charge correlations is of course no 
longer valid in the conductive phase, where an exponential clustering is 
expected. For  instance, the nested-pair resummation processes near the 
zero-density critical point break down for 8rcz > F - 4 ,  as signaled by the 
corresponding divergences of the quantities of interest. At the transition 
line 8~z = F - -  4, the coefficients of the inverse power laws involved in the 
large-distance expansion of C(r) vanish: this announces the exponential 
decay of C(r) in the conductive phase. A precise study of the latter 
behavior would require resummations of the low-fugacity expansions "/t la 
Debye-Hiickel." These resummations should be much more intricate than 
the usual resummation of the chain diagrams valid in the weak-coupling 
regime (32~ because the charges are strongly correlated near the zero-density 
critical point however small their density is. Heuristic theories (15'33) provide 
estimations for the divergent behavior of the correlation length when the 
transition line is approached from the conductive phase. They rely on the 
physical idea that the effective density of free charges goes to zero in this 
limit (almost all the positive and negative charges are bound in neutral 
molecules). A precise formulation of this idea in a rigorous statistical 
description should be a key step in the systematic resummations near the 
transition line. 

The KT  transition characterizes a change in the formal linear response 
of the infinite system to infinitesimal external charges. This change 
corresponds to different large-distance behavior of the translationally 
invariant intrinsic correlations and allows an unambiguous definition of 
both dielectric and conductive phases. However, a natural question con- 
cerns the status of the KT  dielectric phase with respect to the usual macro- 
scopic definition of a dielectric material. In particular, does the total 

to It turns out that this kind of algebraic decay scenario also should be observed in quantum 
Coulomb fluids for any values of the thermodynamic parameters, as shown by Alastuey and 
Martin. ~31) In the quantum case, the existence of algebraic tails in the equilibrium particle 
correlations is linked to intrinsic quantum fluctuations and does not require the formation 
of neutral entities. 
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polarization of a large finite sample submitted to a weak external electric 
field behave in the thermodynamic limit as predicted by the laws of macro- 
scopic electrostatics11? In fact, the validity of such laws is ensured by a very 
peculiar behavior of the finite-volume correlations near the boundaries of 
the sample, as shown by Choquard et al. (34) These authors start from the 
microscopic representation of the dielectric susceptibility tensor and deter- 
mine its behavior in the thermodynamic limit for some simple models 
where explicit expressions of the correlations are available. Such an 
analysis applied to the present system should provide a better understand- 
ing of the macroscopic electrical properties of the KT dielectric phase. 

A special version of the CG where one species (the "ions") is fixed at 
the sites of a lattice has been studied by molecular-dynamics simula- 
tions. (35) At small densities, this model exhibits a KT transition near F =  4. 
This can be shown (36) by rephrasing the original thermodynamic argument 
by Kosterlitz and Thouless (7~ or by using a "spin-block" method. Our 
resummation techniques could be applied to this model in the canonical 
ensemble. We expect the charge and two-body "electron" correlations to 
have similar decays as those found here, when these correlations are 
averaged over the' cells. (36) Without any average, the electron-electron 
correlation is the analog of p r +_ + and should decay as 1/r 2. At high 
densities the KT transition should become a ferroelectric one. (37) 

In the conductive phase, all the particle correlations have the same 
kind of exponential decay at large distances. This phase can then be 
qualitatively described by approximate theories based on the familiar 
closures of either the BBGKY or the BGY hierarchy. For instance, the 
well-known Vlasov approximation has been applied (38) to the fixed-ion 
version of the CG. Such theories fail in reproducing the appearance of the 
KT dielectric phase at low temperatures because they automatically 
exclude possible slower decays of the higher-order correlations. 

Finally, we mention the existence of various solvable one-dimensional 
models with logarithmic interactions. (39) These models undergo transitions 
of the KT type characterized by a qualitative change in the large-distance 
behavior of the correlations (however, in both high- and low-temperature 
phases, the decay of the latter is algebraic). The study of these transitions 
within the RG techniques or the methods introduced in the present paper 
should usefully complete some available explicit exact results. (39) 

tl Here we only consider the linear response of the sample. However, the true response might 
be seriously affected by the following ionization mechanism, which is not taken into account 
by a first-order perturbative treatment of the external field. Indeed, however small the latter 
is, it is sufficient to break large, weakly-bound neutral pairs. The corresponding ionized free 
charges should prevent the sample from behaving as a truly insulating and dielectric 
material. 
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A P P E N D I X  A 

In this appendix, we extract the part C~4) ( r )  of C ( 4 ) ( r )  which gives 
contribution to 1/e of order z g / ( F - 4 )  3 in the limit F--, 4 +. For this, we 
start from the integral expression (4.12) of C ( 4 ) ( r ) ,  which is first rewritten 
as the sum of the conditionally convergent integral 

e ~ - -  Iv, -v21 o 4 f dv~ d v  2 

F Iv~ 
- i v l _ v 2 1 / ' ( v ~ - v 2 ) "  ~ 

Iv; (v2- r/o) ~ 
(v, - v~) .  ~ ( v 2 -  r /~)  ~3 

Iv,zr/~)]~ tA.1) 
(v, - r /a)2] J 

plus the two absolutely convergent integrals  4(Of. { [ ( 
e 2 __  v dvl dr2 ___ (Vl __ V2)" Vl 

o .4 2 IVl-v~l ~ 

_ _  (v2-r/-)~]2-~ 
(v2 - r /o-)2j j  J 

_ F 2 
2 IV1 -- V2] r' [(Vl -- V2) " (vV-'~222 

and 

(v,-, / .)  ~1~ 

(A.2) 

e2 ~ dVl  d v  2 

X F F vlv~ IVl-r /a[  r I v 2 - r / a l  r 

v r Iv2 - r/al r 

v r Iv1 - v21 r Iv~ - r/~l r 

v f  I v , - r / a l  r 

v r Iv, - v21 r Jv2 - r/al r 

2 + 
Iv , -v~ l  ~ 

F (Vl_V2). Iv1 (v~ - r/~) -~ 
+ iv _v.lr ~ (v l - - r /a)2J 

F Iv2 (v2-r/-)l 
Iv,---v21r(v'--v2)" ~ L (v2-- r/G)~J 

[ iv, +2 iv;;v21 r (v,-v~l. ~ (Z:rT~/J 
F 2 [ (v2 (v2 -- r/a) "~]2"~ 

+21v[2v21r (v,-vO. ~ (v~-r/~)VJJ (A.3) 
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where the notation S* means that the integration domain for vl and v2 
excludes the configurations such that any of the relative distances between 
the points 0, r/a, Vl, v2 is smaller than 1. It turns out that the integral (A.1) 
vanishes, as shown by the transformation of variables (Vl, v2)~  (v~-r/o-, 
vz-r/0-), which transforms the integrand into its opposite. In order to 
calculate the contributions of (A.2) and (A.3) to C~4)(r), we proceed as 
follows. We first integrate over v2 at fixed v~ and we split the integration 
domains into various regions. For each region, we extract the possible part 
of the corresponding integrand which gives contributions to C~4)(r). The 
remaining part is then uniformly bounded over the considered region by 
functions which may also depend on r and F. This provides uniform 
bounds with respect to r and F (in a finite neighborhood of F =  4) for the 
contribution to C(4)(r) of this remaining part. These uniform bounds are 
used to prove that the latter does not contribute to C(4)(r] and that 

8 \ I, 
furthermore C~4)(r) indeed reduces to the first terms of the large-distance 
expansion of C(4)(r), where the involved coefficients are replaced by their 
limit forms when F ~ 4 +. The above method is first applied to the integral 
(A.2). 

The integral (A.2) can be rewritten as 

e2z4(~--~Ff2~ du d v 2  1 
0 -4 \ E l  dvl,lv I r/a] > 1 Iv, v2l, Iv2 r/~rl,v2 > 1 [Vl - -  V2] F 

X [ ( u  - -  u " (~Y-~ ~ (u - -  r /0-)  ~ ] 2  -- rT~J J 

0 -4 \ f ~ 4 ]  f,q,]vl_r/o- ] > v0 d v l  

iv1 (v,-r/-) ] 2 
• ~ (vl--r/0-12J 

e2z 4 {0-~r f 2 , 1 
+ 2-7a-\TJ ~, ,~, ,/< >~o dr' ~< 

X [(Vl __ U) �9 (VV-~ll2 (Vl -- r/0-) ~]  2 
(vl - r/~r)2JJ 

e2z4 f0- '~vi ,  2 
- 2 7 \ r j  

1 
d u  m 

IVl - u l  r 

-- V21, IV2 -- r/~rl, v2 > 1 

(A.4a) 

(A.4b) 

1 

dr2 lVx-V2l r 

x[,vlv2,(   A4c, 

for a given Vo > 2 and r/a sufficiently large (r/a > 2vo). The integral (A.4a) 
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is evaluated through an integration by parts and the use of the Poisson 
equation as 

e2z4(a'] r (~zF2)  ~ dOo Vo" [ %  (v~ r/a) ~ 
2 W \7/ \P-22; (Vo- r/a)2J 

x ( l n v o - l n  Vo - r )  (A.5) 

where 0o is the polar angle of v o in a given frame. The integrand of (A.5) 
can be rewritten as - l n ( r / a )  plus a term bounded by cst x (a/r) ln(r/a) and 
a bounded function of %. Thus, (A.5) is equal to 

--647r2e2 ~4 ( 1 ' ] ( a ' ] r ln  

plus three terms bounded respectively by cst x z 4 ( a / r )  t I n ( r / a ) ,  
cst • z4(tT/r) r+ 1 ln(r/a)/(F- 4), and cst x z4(a/r)r/(F - 4). Since the 
integral over u in (A.4b) is bounded by cst/v f - 2  and the integral over v 2 
in (A.4c) is bounded by c s t / ( F - 4 ) ,  the quantities (A.4b) and (A.4c) are 
both bounded by cst x z4(a/r)r/(F-4). Thus, the sole contribution to 
C4(r) of (A.2) arises from (A.4a) and reduces to (A.6). Indeed, all the other 
terms give contributions to 1/e which are bounded by 24/(1 " -  4) 2. 

Now, we turn to the contribution of the integral (A.3). After the trans- 
formation of variable v 2 = vlw in the integral over v2, (A.3) becomes Z4( lf 

e 2 dvl r ----5 
7 l,lvl r/(TI > 1 /)1 

x f  { fa+fb+ " " +fh}  (A.7) 
Jw ,Iw vfl, lw r/(cxvl)l>l/vl 

with 

( r / av l )  2~ i r  - wl r 

fa = i ~  1 - -  r/avllr w r I w -  r/avll r (A.8a) 

1 I w - - r / a v l j  r 
fb = ]~l_r/av~lrwr]~l_wlr  (A.8b) 

F W F 

fc = - -  r  [r lw_r/avllr  (A.8c) 

2 
fa = - -  (A.8d) I'~1 - w l  r 

F ( ~1 -- r/-vl .~ (A.8e) 
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[w - r/r~vl I z/ (A.8f) 

fg 2 1 '1-W] F (*l--W)* *1 ] ( ~ j / j  (A.8g) 

F2 1 I ( w  w - r / ~ v l  '~7 2 (A.8h) 
f h - 2  1r wl r ( r  ~ iw_r/~vl l2j j  

In (A.7), the integration domain for Vl is split into the two disks with 
radius r/(2~) centered at 0 [1 < Vl < r/(2a)] and r/~ [1 < Iv1- r/o-I < r/(2~r)], 
respectively, plus the region (vl, Iv1- r/al > r/(2a)) outside these disks. For 
each given Vl, the integration domain for w is split into three disks with 
arbitrary constant radius centered at 0 (1/vl<w<cst),  r/ovl ( l /v1< 
I w - r/av ~1 < cst), and r 1 ( l/v 1 < I w - r 1t < cst), respectively, plus the region 
(w, Iw-')ll, Iw-r/~vll >cst) outside these disks. The contributions of the 
various regions are now evaluated. 

(1) l <vl <r/(2~ ) 
(1.i) 1/v l < w < cst 
The functions fc, fd, fe, and fg remain bounded near w=0 .  The 

integral of fy over the angle of w is also bounded. Furthermore, using a 
convergent multipolar expansion in powers of w and combining the 
harmonicity of the Coulomb potential with the rotational invariance of the 
weighting factor 1/w r, we find that the angular integral of (fa + fh )  reduces 
to a singular term bounded by cst/w r -  4 plus a bounded function of w. 
This implies t h a t  I1/Vl< . . . . .  t d w { f a + f b ' "  +fg} is bounded. On the 
other hand, since fh behaves as 1/w 2 when w ~ 0, ~/Vl . . . . .  t dw fh can be 
rewritten as a sum of the logarithmic singular term 

f F2  (V1 ~ W) 2 g F  2 
dw - -  In vl + cst (A.9) 

~/v~ < w < cst 2 w 4 2 

plus a bounded function of Vl. The contribution to C4(r) of the considered 
region then entirely arises from the above logarithmic term and reads 

e 2 
1< dVl /.)f 2 7 o Vl < r/icy T 

z4,r  1 
--gO 2/~ 2e 2 __ a 4 \ r j  ~ J r  dv,--vf 3 

=16rc2e2~4 1 [ ( ~ ) v - - ( ~ )  2v 4 ] ( / - _ 4 ) 2  

- I n  
F - 4  

(A.10) 



220 Alastuey and Cornu 

In the last line of (A.10), we have omitted the terms arising from the 
replacements of the prefactor F 2 by 16 and of 2 r 4 by 1 because they 
are bounded by cs t x z4 (o / r ) r / (F-4 ) ,  cs txz4(a /r )Zr-4 / (F-4) ,  and 
cstxz4(~7/r)  2r qn(r/o), and consequently do not contribute to C4(r). 
Moreover, the other contributions to Ct4)(r) arising from ( f a + f b +  
... +fg) and from the integrable (at w = 0 )  part  o f f h  are bounded by 

cst x z4(~r/r)r/(F- 4). 

(1.ii) l/v1 < Iw--r/av~l <cs t  
We set w = r/ovl + w'. The functions fb, fd, fe, and fg  remain bounded 

near w' = 0. The integral o f f f  over the angle of w' is also bounded for w' 
small. An analysis similar to that of case (1.i) shows that the angular 
integral of (f~ +fc)  reduces to a singular term bounded by cst/(w') r 4 plus 
a bounded function of w'. Finally, the angular integral of fh  is the sum of 
a singular term bounded by cst x (avl/r) r -  2/w'2 plus a bounded function of 
w'. The part  of (A.7) corresponding to the considered region can then be 
rewritten as the sum of two terms which are bounded by cst x z4(a/r)r/ 
( F - 4 )  and cstxz4(a/r)rln(r/a),  respectively. Thus, this region does not 
contribute to C4(r). 

(1.iii) 1/vl < l w - ~ l [ < c s t  
We set w = ~ 1 + w". The function fa  remains bounded near w" = 0. The 

integral of (fb + "'" + f h )  over the angle of w" reduces to a singular term 
bounded by cst/(w") r 4 plus a bounded function of w". Consequently, 
there is no contribution to C4(r), and the contribution to C4(r) is bounded 
by cst x z4(~r/r)r/(r - 4). 

(1.iiii) w, I w - % l ,  Iw- r /Gv l l  >cs t  
The functions fb, fd, fe, f~, and fh are bounded by functions of w 

which are integrable over ~2. In the region w>r/(2ovl),  the integral of 
(f~ +f~)  over the angle of Vl is bounded by a function of w integrable over 
N2, while the corresponding angular integral of 

w<r/(2,,~) dw ( f .  + fc) 
w, lw %1 > cs t  

is bounded. Finally, fg can be rewritten as the sum of an integrable function 
of w plus the function 

FZ[w �9 (% - (01 -- r/avl)/l~l -- r/~TVll 2)32/(2w r)  

whose integral over w reduces to a bounded term plus 

gr2 F  ̂ r -- r/avl ]2 
2(F----4) L vl I~--r/crvl~[zJ 
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Consequently, the sole contribution to C4(r) arises from the latter singular 
term and reads 

e 2 - -  dr1 g F 2  1 
0 .4 1 < ~1< ~/(2~ 2(F- -  4) Vl r - 2  

F, 1 ' l  - r/av~ .]2 
N k 10, -r/ovll2J 

= - - (A.11) 1 6 ~ 2 e 2  o "4 ( F - - 4 )  2 L \ r l  \ r /  J 

In the last line of (A.11) we have omitted terms bounded by cst x z4({y/r)r/ 
( F - 4 ) ,  a function which also bounds all the other contributions to  C(4) ( r )  
of the present region. 

(2) 1 < ]r - r/a] < r/(2a) 
For  obvious symmetry reasons, the contributions to C2(r) and C(4~(r) 

are identical to those of the region (1). 

(3) vl, I v l - - r / a  I >r/(2a) 
(3.i)  1/• 1 < W < cst or 1/vl < ]w - r/avl] < cst 
The functions fd, f . ,  and fg are bounded, while f f  is bounded by a 

function which remains integrable at w - - 0  and w=r/avl.  On the other 
hand, fa ,  fb, and fc are bounded outside the disks centered at 0 and r/avl 
with radius r/(2O'Vl). In the disk w<r/(2aVl) []w-r/avl] <r/(2avl)], Ic 
(fb) remains bounded, while the angular integral of (fa + f b )  [ ( f a + f , ) ]  
over the angle of w ( w -  r/av~) can be rewritten as a singular term bounded 
by cst/w r 4 [cst/Iw-r/avl] r-4] plus a bounded function of w 
(Iw-r/avll) .  Therefore the integral of ( f a + f b + - . .  +fg) over the con- 
sidered region is bounded and does not contribute to C4(r). The integral 
offh outside the disks w < r/(2aVl) and ] w -  r/~vll < r/(2avl) is bounded by 
a constant times 

,Iw r/.vtl>r/(2.Vl) 7 2 I w - ~  2 

which is a pure number, as shown by the transformation of variable 
w--ur/~v 1. In the disk w<r/(2aVl) [Iw-r/avl l<r/(2avi)] ,  fh is 
equal to the singular term 

l 2 A ~V (vs-w)2/w 4 

[~ _r/~vl lr  [ - ( v l - r / a v l ) "  ( w -  r /o-v1)]  2/lw --  r / ov l  ] 4 
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plus a function integrable at w = 0 (w =r /av l )  and bounded by 

[cst x avl/rw + cst x ( a v l / r )  2] 

{ [cst x 0-v,/(r Iw - r/0-vll) + cst x (0-v j r )  23 } 

Thus the integral offh over the above disks reduces to 

r2{; 1 
- -  dw (w" 01) 2 
2 /v~ < w < r/(2CrVl) W 4 

1 f dw' 
-~ 101-r/0-vll r VVl<W'<r/(2~o 

7z-F '2 F 1 ] r 
= 2 L l+lOl - r / -aVx l  r - 5  ln2-~a 

[-W'" (01  - -  r/o-v1)]2] 
W t4 

(A.12) 

plus a bounded quantity. It then follows that the sole contribution to C4(r) 
arises from the logarithmic term (A.12) and reads 

~o 2 

~'4 1, Iv1 r/a I > r/(2cr) 

dVl nF21n(r/a)  I 1 ] 
2vr_ 2 1 + 101 _ r / a v l l r _ 2  

z4 (ra_)r in ( r )  f,, 1 = dr1 r-----5 167ze2 ~ ,> rio V t 

z 4 1 in(r/a) (A.13) 
= 32~t2e2 0 -4 / - ' - -  4 r 2r 4 

In the second line of (A.13) the replacements of 101 -r/0-vl l  r 2 by 1 and 
of the condition Vl, Iv1 - r/o-1 > r/a by vl > r/a are legitimate because the 
1 / (F- -4 )  divergent term arises from the values of v I large compared to r/o-. 
The terms omitted in the second line of (A.13) are bounded by 
cstxza(0-/r)2r-aln(r/0-),  while the other contributions to  C(4)(r) are 
bounded by cst x z 4 x (a / r )2r -4 / (F  - 4). 

(3.ii) l / v1< Iw-011 <cs t  
As in the case vl < r/(20-) and for the same reasons, this region does 

not contribute to Ca(r), and its contribution to C(4)(r) is bounded by 
c s t  X Z4 'X ( a / r )  2 F  4/( /"-4) .  

(3.iii) w, [w-r/o-v1[, Iw-011 >cs t  
The functions )ca, fb,  f~, fa,  f~, f f ,  and fh are bounded by integrable 
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functions of w, while fg can be rewritten as a term bounded by an 
integrable function plus 

~'2 IWo(~, 1 ~ l _ r / o . u 1  , ~ ] 2  
2w r _ _ (~_~)2jj (A.14) 

The integral of (A.14) over w is bounded by cstx (r/avl)2/(F-4). Thus 
there is no contribution of the considered region to C4(r), and its contribu- 
tion to C(4)(r) is bounded by cst x zn(0./r)ar-4/(F-4). 

The total contribution of the integral (A.3) to C4(r) is equal to (A.13) 
plus twice the sum of (A.11) and (A.10). Adding the contribution to that 
(A.6) of the integral (A.2), we finally obtain the expression (4.t3) of C~(r). 
Taking into account the above uniform bounds for the various contribu- 
tions to C(4)(r), we see that C~(r) indeed is the limit form when F--+ 4 + of 
the first three terms in the large-distance expansion of C(4)(r) [note that 
the ln(r/a)/r 2r-4 terms arising from (A.9) and (A.12) exactly cancel out].  

Finally, we derive a simple integral representation for C4(r) which 
involves the coordinates x and y of the field pair ~ = [ O x, @ y ]. Since 

flxl,lx_rl>r/2~22 f dy a r I ( x  _x--r ~]2 Ix-yl>a 0"2 Ix--yl/ ( x - - y ) -  ix~2 ix_rl2jj 

is bounded by c s t / ( F - 4 ) ,  the contribution (A.6) of the integral (A.2) to 
C~(r) entirely arises from 

s --2e2~ 7 x or  x r <r12 (72 
x , x  r >~r 

I dyF 2 ar I ( x x s r ' ] ~ 2  (A.15) X > a  0"2 Ix--yl 2 Ix--yl ~ ( x - y ) "  ix12 i x _ f l a i l  

Furthermore, returning to the integral expressions over Vl and w in (A.10), 
(A.11), and (A.13) and introducing the variables x and y, we find after 
simple manipulations that the contribution to C4(r) of the integral (A.3) 
is identical to that of 

dx 

dyF 2/ a \ r [  { x x-r_)]2 
X fix Yl>lxl 0"2 7 t'~'-'~'~) L Ix-y)' t i ;? ix-r,bS_l (1.16) 

Thus, the sum of (A.15) and (A.16) provides the integral representation 
(4.19) of C4(r), which must be understood in the following mathematical 

822/'66/1-2-15 
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sense: it reduces to C~(r) plus a remainder which has the same uniform 
(with respect to r and F) upper bounds as the difference [C(4)( r ) -  C4(r)]. 

A P P E N D I X  B 

In this appendix, we show that the Z 2 terms in the expansions of the 
expressions (5.28) and (2.8) for 1/e do coincide. For this, we have to 
calculate p and p_ +([Yll)P-+(Yl) at the order z 4, i.e., 

Z 2 

= a--~ f dyl  exp[fle2v(Iyll)] p 

z4f 
+ 2a----g dyl dx 2 dya {exp[-flV4(O, x2; y~, Y2)] 

- exp [fle2v(lyll )] exp[fleav(lx2 - y2l )] 

- exp [fle2v(ly21 )] exp[fle2v(Ix2 - yll )] } 
+ o(?) (B.I) 

and 
Z 2 

P-+( lYl l )P  +(Y~)=-eo--~ylexp[fleZv(tYlJ)] 

Z 2 
Yl f dx2 dy2 {exp[-flV4(O, x2; y, ,  Y2)] --e0.8 

-- exp[fle2v(lyl I)3 exp[fle2v(Ix2 -- Y21 )] } 

z"fax  Jay IexpE- v.Io, yl,y )l + - -  X 2 e ~ 8 

-- exp[ --flV4(O, Y2; Y~, x2)] } 

+ O(z 6) (B.2) 

The rhs of (5.28) then becomes, after using (5.29b), 

Z 2 

1 
a4 S dyl exp[fle2v(ly11)] 

• (~ f dyl dx2 dy2 {exp[ -  flV4(O, x2; yl, y2) ] 

- exp [/3e2v( lYl I)] exp [/3eZv(Ix2 - Yzl )] 

- exp [fle2v(ly2[ )] exp [fleEr( Ix2 -- y~[ )] } 

+ fie2 [ dy~ Vv(yl)" P(yl)~ + O(z 4) (B.3) 
2 3 / 
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with 
/. 

P(Y~) = Yl J dx2 dy2 {exp - [/~V4(O, x2; Yl, Y2)] 

- exp [-/~e2v(ly i I ) ] exp [fle2v(Ix 2 - Y2I ) ] } 

- f dx2x2 f dy2 {expl--flV4(O, x2; y,,  Y2)] 

• exp[---/~V4(0, Y2; Y,, x2)]} (B.4) 

In order to manipulate the conditionally convergent integrals which appear 
in (B.3) and (B.4), in particular to invert the successive integrals over Yl, 
x2, and Y2, it is convenient to introduce the function 

G(0, x2; y~, Y2)= exp]- -  flV4(0, x2; Yl, Y~)] 

- exp[fle2v(lyi] )] exp[fle2v(]x2 - Yz] )] 

• [1 +/3e2(yl "V)(y2 - x2)" Vv(x2)] 

- exp[/~e2v(lY2[ )] exp [/~e2v(lx2 - Yl I)] 

• E1 +]~e2(yz 'V)(y~-  x2) 'Vv(x2)]  (B.5) 

Taking into account the general prescription given in the main text for 
calculating such integrals, we then obtain 

f dyl  dx 2 dy2 {exp[ -/~V4(0, x2; Yl, Y2)] 

- exp [/~e2v(lYlt )3 exp[fle2v(Ix2 - Y2t )] 

- exp [/3e2v(lY2l )] exp [/3e2v(lx2 - Y~ t)] } 

= f dy~ dx 2 dy 2 G(O, x2; yl,  Y2) (B.6) 

and 

f dy~ Vv(y~). P(Yl) fie 2 

= -- fie 2 f dy~ dx 2 dy 2 G(0, X 2 ; Yl, Y2)(x2 - Y2 - Yl)" Vv(yl) 

+ 2 ~ e  2 f dy ,  exp[fle2v(]yl] )] f dt  t 2 exp[fle2v(t)] 

f12e4 
d t  t 2 exp[/~e~v(t)] I dye dr' exp[~e2v(C)] 

2 

• [V2v(y~)](t ' .  V) v(y~ - t') (B.7) 

In (B.6) and (B.7), the integrals involving G are absolutely convergent 
because G has a sufficiently fast decay for any large separation of its 
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arguments. The last two integrals in the rhs of (B.7) arise from the dipole- 
dipole interaction terms appearing in the definition (B.5) of G [these terms 
do not contribute to the rhs of (B.6) for obvious symmetry reasons]. On 
the other hand, an integration by parts gives 

j dyl Vv(yt) �9 P(yl) ~e 2 

= - f  dyl exp[fle2v(lY~])] V" {P(yl) exp[-fle2v(y~)]} (B.8) 

If we replace P(Yl) by (B.4), we can calculate V" (P(y~)exp[-fle2v(yl)] } 
by inverting the differentiations with respect to y~ and the integrals over x 2 
and Y2. Rewriting the corresponding result in terms of G, the identity (B.8) 
then becomes 

fie 2 f dyl Vv(yl) �9 P(y~) 

f dy I dx 2 dy 2 G(0, X2; Yl, Y2)(X2-- Yl --Y2)" Vv(yl) ~ ~ e  2 

2retie 2 f dyx exp[fle2v(qYll )] f dt t 2 exp[fle2v(t)] + 

f dyl dx2 dye G(0, x2; yt, Y2) 1 2 

32e 
f dt t 2 exp[fle2v(t)] +--2-- 

• f dyl dt' exp[fle2v(t')] [V2v(y~)](t ' .V) v(yl - t') (B.9)  

where we have used the symmetry relations 

G(0, x2; Yl, Y2) ----- G ( 0 ,  x 2 ;  Y2, Yl) : G ( 0 ,  x 2 ;  x 2 - y~, x2 - Y2) 

Adding (B.7) to (B.9), we find 

I dyl Vv(y~). P(y,) /~e 2 

= - - f  dyldX2 dy2 G(0, x2;yl,  Y2) 

+27~fle 2 f dyl exp[fle2v(]yl[)] f dt t 2 expEfle2v(t)] (B.10) 

Replacing the integrals involved in (B.3) by their respective expressions 
(B.6) and (B.10), we finally get for the rhs of (5.28) 

7zfle2z 2 
1 ~4 f dt t 2 exp[fle2v(t)] + O(z 4) (B.11) 
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which indeed is identical to a truncated expansion at the order z 2 of the rhs 
of (2.8). 

A P P E N D I X  C 

In this appendix, we calculate the function D +, +(t', t", R) at the 
order z 6 included and we show that it indeed satisfies the identity (5.41). 
The expression for pr_+ +(rl,  r2, r3, r4) at the order z 6 reads 

pr_ +_ +(rl, r2, r3, r4) 

Z 4 
=~-~ {exp[-/~V4(r2, r4; r~, r3) ] 

- exp[fleZv(q2)] exp[fie2v(r34)] } 

z6 f +~7~ dx dy {exp[-~V6(r2 ,  r4, x; r l ,  r3, y)]  

- exp[-f lV4(r2,  r4; rl, r3)] exp[fle2v(Ix - Yl )] 

- exp[ _ fiV4(r2, x; rl, r3) ] exp [/~eev( Jr 4 - Yt )] 

- e x p [ - f l V 4 ( r 2 ,  r4; rl, y)]  exp[-fleZv(Ix- r31)] 

- exp[- f lV4(x ,  r4; r 1, r3)] exp[fleZv(lr2 - Y[)] 

- e x p [ - f l V 4 ( r 2 ,  r4; y, r3)] exp[ f i e2v ( l x - r l l ) ]  

- e x p [ -  fiV4(x, r4; y, r3)] exp[fleZv(r12)] 

- e x p [ - f l V a ( r  2, x; r~, y)] expl-fle2v(r34)] 

- e x p [ - f l V a ( x ,  r4; rl, y)]  exp[/?e2v(r23)] 

-expl - - f lV4(r2 ,  x; y, r3)] exp[fle2v(r14)] 

+ 

+ 

+ 

+ 

+ 

+ 

2 exp[f le2v(]x-  r l l ) ]  

2 exp [fle2v(lx - r3] )] 

2 exp[fleZv([x - r3l)] 

2 exp [fleZv(]x - rll ) 3  

exp[fleZv([r2 - Yl )3 exp[fleZv(r34)] 

exp[fleZv(]r 4 -  y[ )3 exp[fle2v(r12) ] 

expl-fle2v(lr2 - Yl )] exp[fle2v(ra4)] 

exp[fle2v(lr4 - Yl )] expl-//e2v(r23)] 

2 exp[f ie2v(Ix-  Yl)] exp[fleZv(rl2)] exp[fle2v(r34)] 

2 exp[fleev(lx - Yl )] exp[fle2v(r14) -] exp[fle2v(r23)] } 

+ O(z 8) (C.1) 
We set t ' = r z - r l ,  t " = r 4 - r 3 ,  and R =  ( r 3 + r 4 - r 1 - r 2 ) / 2 ,  and we study 
the limit of (C.1) when R--+ oo with R, t', and t" being kept fixed. As 
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expected, each term of order Z 2 N  decays as D(2u+ ), +(t', t ' ,  II)/R z. Using a 
multipolar expansion of V4(r2, r4; rl,  r3) with respect to t' and t", we easily 
obtain 

Z 4 
D(4)+, +(t', t", R) = - /~e 2 ~-g exp[~eZv(t')] expE~e2v(t')] 

x E(t'. t") - 2(!1. t ')(R �9 t")] (C.2) 

The coefficient D(6~+, + is entirely determined by the large-R behavior of 
the conditionally convergent integral 

f dx dy {expE- f lV6( r2 ,  r4, x; rx, r3, Y)] 

- exp[/~eZv(I x - Yl )] exp[ -/3Va(r2, r4; rl,  r3)] 

- exp [ - /~V4(x ,  r4; y, r3)] exp[~e2v(t')] 

- exp [ - / ?V4( r2 ,  x; r 1, y)] exp[~e2v(t")] 
+ 2 exp[/~e2v(Ix- yl)]  exp[fleZv(t')] exp[~eZv(t")]} (C.3) 

[-all the other terms in the integral coefficient of z 6 in (C.1) give contribu- 
tions which decay faster than l/R2]. It is convenient to rewrite (C.3) as the 
absolutely convergent integral (t = x - y) 

f dx dy (exp[ - f l V 6 ( r 2 ,  r4, x; r l ,  r3, Y)] 

-exp[~eZv(t)] exp[--/~Va(r2, r4; rl ,  r3)] 

-expE-/3V4(x,  r4; y, r3)] exp[~e2v(t')] 
-exp[--/~V4(r2,  x; rl,  y)]  exp[-peZv(t")] 
+ exp[-~eZv(t)] exp[-~eZv(t')] exp[~e2v(t")] 

x {2 -/~2e4[(t '" V)(t". V) v(r24)] [-(t' �9 V)(t" V) v(x - r2) ] 

- j~2e4[(t'. V)(t". V) v(rz4)] [ ( t" .  V)(t" V) v(x - r4) ] 

-flZe4[(t '  .V)(t "V) v(x - r 2 ) ]  [(t" "V)(t-V) v(x - r 4 ) ]  }) (C.4) 

plus 

f12e4 expEfle2v(t')] exp[fle2v(t")] f dx dy exp E fle2v( t ) ] 

x [ ( t ' -V)( t  .V) v ( x - r 2 ) ]  [ ( t"-V)( t  .V) v ( x -  r4)] (c.5) 



Correlations in KT Phase of 2D Coulomb Gas 229 

The large-R behavior of (C.5) is found to be 

- ~ 2 e 4  exp[~eZv( t ' ) ]  exp[~e2v( t" )]  f d t  t 2 exp [ fle2v( t ) ] 

x (t'- V)(t" �9 V) v(R) (C.6) 

after an integration by parts and use of the identity ~ dx VZv(x) = -2~.  The 
leading contributions to the large-R behavior of (C.4) arise from configura- 
tions where the field pair ~ = { @ x, @ y } is close either to the pairs ~ '  
or N". For ~a close to N" we get the 1/R z contribution 

f dx dy {exp[ -/~V4(x, r4; y, r3)] /~e 2 exp[fle2v( t') ] 

- exp[f leZv(t)]  exp[f ie2v(t")]  [1 +/~eZ(t ". V)(t.  V) v(x - r4) } 

x ((t + t"). V)(t'. V) v(R) 

= fie 2 exp[~eZv( t ' ) ]  [P( t") .  V]( t ' .  V) v(R) 

7~f12e 4 e x p [ f l e Z v ( t , )  ] z ,, f t 2 + exp[/~e v(t )] dt exp[f le2v(t)]  

x (t' �9 V ) ( t " .  V)  v (R)  (C.7)  

where P(t") is defined by (B.4) with Y l = - t ' .  The contribution of the 
region ~ close to ~ '  reduces to (C.7) with (t", t') in place of (t', t") for 
obvious symmetry reasons. Thus, the large-R behavior of (C.3) is equal to 
(C.6) plus twice the symmetrized (with respect to t' and t") form of (C.7). 
This leads to 

D(6)+, + (t', t"; 0=) 

Z 6 

= - 7~f12e 4 7i  5 exp[~e2v( t ' ) ]  exp[f ie2v(t")]  f d t  t 2 exp[~e2v( t ) ]  

• [ ( t ' .  t") - 2 ( R -  t ' ) (R �9 t")]  

Z 6 
- fie 2 - -  (exp[f leZv(t ' )]  { [P(t") �9 t ' ]  - 2[-R- P(t")]  (!~ �9 t')} 

0"12 

+ e x p [ f l e Z v ( t " ) ] { [ P ( t ' ) ' t " ] -  2 ( f ~ ' t " ) [ f ~ ' P ( t ' ) ] } )  (C.8) 
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At the order Z 6 included the rhs of the identity (5.41) reads 

e z  4 

exp[fle2v( t') ] f dt exp[fleZv( t ) ] I t ' -  2(R "t') l~] (78 

e z  6 

exp[fle2v(t')] f dyl dx2 dy2 G(0, x2; Yl, y a ) [ t ' -  2(R. t') R] O-12 

e z  6 

f dt exp[fleZv(t)] [P(t') - 2(R" t').  P(t')] 0-12 

+ O(z 8) (C.9) 

At the same order, the lhs of (5.41) is determined from the expressions 
(C.2), (C.8) of D (4'6) +. Using the colinearity of the vectors t", P(t'), and 
F(t") = -Vv(t"), as well as the identity (B.10) with Yl = -t",  we find that 
this lhs indeed reduces to (C.9). 
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